Summary

Respirometric皂甙通透心脏纤维的氧化磷酸化的评估

Published: February 28, 2011
doi:

Summary

皂甙与respirometric氧化磷酸化的分析,结合通透的纤维制备提供了线粒体功能的综合评估。线粒体呼吸在生理和病理状态下,可以反映不同监管规定的影响,包括线粒体相互作用,形态和生物化学。

Abstract

线粒体参与能量代谢,氧化应激,细胞凋亡,延缓衰老,线粒体encephalomyopathies和药物毒性,线粒体功能的调查代表心脏生理学的一个重要参数。鉴于此,技术来衡量心脏线粒体功能的需求。一项技术,它采用一种综合的方法来衡量线粒体的功能是respirometric氧化磷酸化(OXPHOS)分析。

respirometric OXPHOS评估的原则是围绕利用克拉克电极测量氧气浓度。通透的纤维束消耗氧气,氧气浓度在封闭腔下降。使用选择底物抑制剂 – 解偶联剂滴定协议,电子提供电子传递链的特定网站,使线粒体功能的评价。之前线粒体功能的respirometric分析,机械和化学的筹备技术是利用通透肌纤维肌膜。化学通透采用皂素,在保持细胞结构的同时,有选择性的细胞膜穿孔。

本文深入介绍了在准备测量耗氧量的皂素皮肤的心脏纤维,以评估线粒体OXPHOS所涉及的步骤。此外,故障排除建议以及具体的基板,可用于确定在特定网站的电子传递链的线粒体功能抑制剂和uncouplers提供。重要的是,所描述的协议可能很容易地应用到各种动物模型和人体样本的心脏和骨骼组织。

Protocol

1。试剂准备 1稍作修改,准备放松和保存液(RP解决方案) 。简言之,RP解决方案包括2.77mM CAK 2 EGTA,7.23mM K 2 EGTA,20MM咪唑,0.5mm的二硫苏糖醇,牛磺酸20MM,50MM的K – MES,6.56氯化镁2,5.7mM三磷酸腺苷,磷酸肌酸14.3mM,pH值7.1调整,在室温(RT)。通过0.45微米的过滤器进行消毒过滤的解决方案。分成15毫升的部分(猎鹰聚丙烯管)保存在-20 ° C配方的讨论。 </l…

Discussion

皂甙通透的心脏纤维技术,提供了一个独特的妥协之间在体外和体内线粒体OXPHOS耗氧量评估。这种技术的优点包括增加生理的相关性比较孤立的细胞结构线粒体被保留下来。虽然质膜降解,细胞内的膜结构,包括线粒体12,14,14肌质网, 丝和17的骨架1,保持不变。此外,线粒体和细胞骨架,17之间的相互作用也保持不变。透纤维线粒体增加稳定…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究是由加拿大卫生研究院和加拿大基因组研究所的支持。的JS从阿尔伯塔省遗产基金会加拿大的医学研究,心脏及中风基金会和加拿大糖尿病协会举行的薪水支持奖。实验室要感谢Oroboros仪器的技术援助,在通透的皂素纤维技术收购。

Materials

Material Name Type Company Catalogue Number Comment
100% Ethanol   Fisher Scientific HC600  
70% Ethanol   Fisher Scientific HC-1000  
Adenosine 5′-diphosphate monopotassium salt dihydrate (ADP)   Sigma A5285  
Albumin from bovine serum essentially fatty acid–free   Sigma A-6003  
Antimycin A   Sigma A8674  
Ascobic acid   Sigma A4403  
Adenosine 5′-triphosphate disodium salt hydrate (ATP)   Sigma A2383  
Atractyloside   Sigma A6882  
Calcium carbonate   Sigma C4830  
Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP)   Sigma C2920  
Cytochrome c   Sigma C7752  
Digitonin   Sigma D141  
Dithiothreitol   Sigma D9779  
Ethylene glycol-bis-(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA)   Sigma E4378  
Glutamic acid   Sigma 27647  
HEPES   Sigma H4034  
Imidazole   Sigma I5513  
Ketamine   Pfizer   Ketaset
Lactobionic acid   Sigma 153516  
Magnesium chloride (MgCl2)   Sigma M9272  
Magnesium chloride hexahydrate (MgCl2∙6H2O)   Sigma M9272  
Malic acid   Sigma M1000  
MES   Sigma M3671  
N,N,N’,N’-Tetramethyl- pphenylenediamine Dihydrochloride (TMPD)   Sigma T3134  
Oligomycin   Sigma O4876  
Phosphocreatine   Sigma P7936  
Potassium Chloride   Sigma P9541  
Potassium Hydroxide   Sigma P5958  
Potassium cyanide   Fluka 60178  
Potassium phosphate monobasic   Sigma P5655  
Rotenone   Sigma R8875  
Saponin   Sigma 47036  
Sodium Pentobarbital   Ceva Sante Animale 1715 138 Conc. 54.7 mg/ml
Sodium pyruvate   Sigma P2256  
Succinic acid   Sigma S3674  
Sucrose   Sigma S7903  
Taurine   Sigma T8691  
Xylazine   Bayer   Rompun
ddH2O        
Ice        
Oroboros Oxygraph-2k   Oroboros Instruments    
Kimwipes   VWR 21905-026  
15ml polypropylene centrifuge tubes   VWR 89004-368  
50ml polypropylene centrifuge tubes   VWR 89004-364  
Straight Jewelers Forceps   George Tiemann & Co. 160-50B  
Curved Jewelers Forceps   George Tiemann & Co. 160-57B  
Straight Surgery Scissors   George Tiemann & Co. 105-402  
Sterile Surgical Blade   VWR BD371610  
0.45-μm Syringe filters   VWR CA28145-485  
pH meter   VWR CA11388-308  
Glass Petri dishes   VWR 89000-300  
12-well Polystyrene Tissue Culture Plates   VWR 82050-926  
Plate Stirrer   VWR 97042-594  
Fisherbrand Microbars   Fisher Scientific 14-511-67  
Weigh Scale   VWR CA11278-162  
10μl Hamilton Micro Syringe   Fisher Scientific 14-815-1  
25μl Hamilton Micro Syringe   Fisher Scientific 14-824-7  
50μl Hamilton Micro Syringe   Fisher Scientific 14-824-5  
Nalgene Squeeze Bottles   Wilkem Scientific LNA2407-1000  
Polystyrene Weighing Dishes   VWR 89106-750  
Dissecting Microscope   Olympus    

References

  1. Saks, V. A., Veksler, V. I., Kuznetsov, A. V. Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo. Mol Cell Biochem. 184, 81-100 (1998).
  2. Gnaiger, E., Kuznetsov, A. V., Schneeberger, S., Heldmaier, G., Klingenspor, M. Mitochondria in the cold. Life in the Cold. , 431-442 (2000).
  3. Rasmussen, H. N., Rasmussen, U. F. Oxygen solubilities of media used in electrochemical respiration measurements. Anal Biochem. 319, 105-113 (2003).
  4. Visscher, G. D. e., Rooker, S., Jorens, P. Pentobarbital fails to reduce cerebral oxygen consumption early after non-hemorrhagic closed head injury in rats. J Neurotrauma. 22, 793-806 (2005).
  5. Kuznetsov, A. V., Veksler, V., Gellerich, F. N. Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc. 3, 965-976 (2008).
  6. Gnaiger, E. Oxygen conformance of cellular respiration. A perspective of mitochondrial physiology. Adv Exp Med Biol. 543, 39-55 (2003).
  7. Gnaiger, E. Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology. Int J Biochem Cell Biol. 41, 1837-1845 .
  8. Sena, S., Hu, P., Zhang, D. Impaired insulin signaling accelerates cardiac mitochondrial dysfunction after myocardial infarction. J Mol Cell Cardiol. 46, 910-918 (2009).
  9. Boudina, S., Sena, S., O’Neill, B. T. Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation. 112, 2686-2695 (2005).
  10. Lenaz, G., Genova, M. L. Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid Redox Signal. 12, 961-1008 .
  11. Lemieux, H., Hoppel, C. L. Mitochondria in the human heart. J Bioenerg Biomembr. 41, 99-106 (2009).
  12. O, . Retarded diffusion of ADP in cardiomyocytes: possible role of mitochondrial outer membrane and creatine kinase in cellular regulation of oxidative phosphorylation. Biochim Biophys Acta. 1144, 134-148 (1993).
  13. Endo, M., Kitazawa, T., Morad, M. E-C coupling studies in skinned cardiac fibers. Biophysical Aspects of Cardiac Muscle. , 307-327 (1978).
  14. Veksler, V. I., Kuznetsov, A. V., Sharov, V. G. Mitochondrial respiratory parameters in cardiac tissue: a novel method of assessment by using saponin-skinned fibers. Biochim Biophys Acta. 892, 191-196 (1987).
  15. Bangham, A. D., Horne, R. W., Glauert, A. M. Action of saponin on biological cell membranes. Nature. , 196-952 (1962).
  16. Daum, G. Lipids of mitochondria. Biochim Biophys Acta. 822, 1-42 (1985).
  17. Milner, D. J., Mavroidis, M., Weisleder, N. Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol. 150, 1283-1298 (2000).
  18. Skladal, D., Sperl, W., Schranzhofer, R., Skladal, E., Gellerich, F., Wyss, M. Preservation of mitochondrial functions in human skeletal muscle during storage in high energy preservation solution (HEPS). What is Controlling Life?. , 268-271 (1994).
  19. Kuznetsov, A. V., Wiedemann, F. R., Winkler, K. Use of saponin-permeabilized muscle fibers for the diagnosis of mitochondrial diseases. Biofactors. 7, 221-223 (1998).
  20. Gnaiger, E., Dykens, J., Will, Y. Polarographic oxygen sensors, the oxygraph and high-resolution respirometry to assess mitochondrial function. Drug-Induced Mitochondrial Dysfunction. , 327-352 (2008).
check_url/2431?article_type=t

Play Video

Cite This Article
Hughey, C. C., Hittel, D. S., Johnsen, V. L., Shearer, J. Respirometric Oxidative Phosphorylation Assessment in Saponin-permeabilized Cardiac Fibers. J. Vis. Exp. (48), e2431, doi:10.3791/2431 (2011).

View Video