Summary

आदेश में बाध्यकारी तंत्र निर्धारित परिवर्तनीय एकाग्रता इज़ोटेर्माल अनुमापन calorimetry डेटासेट संग्रह

Published: April 07, 2011
doi:

Summary

आईटीसी अपने मेजबान के लिए एक ligand के बंधन के अध्ययन के लिए एक शक्तिशाली उपकरण है. जटिल प्रणालियों में, तथापि, कई मॉडल डेटा को समान रूप से अच्छी तरह से फिट हो सकती है. विधि यहाँ वर्णित करने के लिए एक जटिल प्रणालियों के लिए उपयुक्त बाध्यकारी मॉडल को स्पष्ट और इसी thermodynamic मापदंडों निकालने का मतलब प्रदान करता है.

Abstract

Isothermal titration calorimetry (ITC) is commonly used to determine the thermodynamic parameters associated with the binding of a ligand to a host macromolecule. ITC has some advantages over common spectroscopic approaches for studying host/ligand interactions. For example, the heat released or absorbed when the two components interact is directly measured and does not require any exogenous reporters. Thus the binding enthalpy and the association constant (Ka) are directly obtained from ITC data, and can be used to compute the entropic contribution. Moreover, the shape of the isotherm is dependent on the c-value and the mechanistic model involved. The c-value is defined as c = n[P]tKa, where [P]t is the protein concentration, and n is the number of ligand binding sites within the host. In many cases, multiple binding sites for a given ligand are non-equivalent and ITC allows the characterization of the thermodynamic binding parameters for each individual binding site. This however requires that the correct binding model be used. This choice can be problematic if different models can fit the same experimental data. We have previously shown that this problem can be circumvented by performing experiments at several c-values. The multiple isotherms obtained at different c-values are fit simultaneously to separate models. The correct model is next identified based on the goodness of fit across the entire variable-c dataset. This process is applied here to the aminoglycoside resistance-causing enzyme aminoglycoside N-6′-acetyltransferase-Ii (AAC(6′)-Ii). Although our methodology is applicable to any system, the necessity of this strategy is better demonstrated with a macromolecule-ligand system showing allostery or cooperativity, and when different binding models provide essentially identical fits to the same data. To our knowledge, there are no such systems commercially available. AAC(6′)-Ii, is a homo-dimer containing two active sites, showing cooperativity between the two subunits. However ITC data obtained at a single c-value can be fit equally well to at least two different models a two-sets-of-sites independent model and a two-site sequential (cooperative) model. Through varying the c-value as explained above, it was established that the correct binding model for AAC(6′)-Ii is a two-site sequential binding model. Herein, we describe the steps that must be taken when performing ITC experiments in order to obtain datasets suitable for variable-c analyses.

Protocol

1. शेयर समाधान की तैयारी शुद्ध ब्याज की macromolecule. (इस मामले में, एन 6'-acetyltransferase-II (AAC6'-II) aminoglycoside, कहीं और रिपोर्ट के रूप में अलग है 13 .) डायलिसिस बफर के 4 लीटर तैयार. (इस मामले में हम 25 4 मिमी इस्तेमाल किया – (2 hydroxyet…

Discussion

चर ग फिटिंग के इस विश्लेषणात्मक भाग पहले 10 में विस्तार से वर्णित किया गया है. यहाँ हम इस दृष्टिकोण के लिए चर ग उपयुक्त डेटासेट इकट्ठा करने के व्यावहारिक पहलुओं की रिपोर्ट. यह आवश्यक है कि सभी प्रोटी?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

यह काम स्वास्थ्य अनुसंधान संस्थान कनाडा (CIHR), राष्ट्रीय विज्ञान और इंजीनियरिंग अनुसंधान परिषद (NSERC), और एक CIHR प्रशिक्षण अनुदान छात्रवृत्ति (वामो के लिए) द्वारा समर्थित किया गया. हम प्रो AAC के लिए जेरार्ड डी. राइट (McMaster विश्वविद्यालय, कनाडा) (6)-II अभिव्यक्ति प्लाज्मिड धन्यवाद.

Materials

Material Name Type Company Catalogue Number Comment
Acetyl coenzyme A (AcCoA)   Sigma-Aldrich A2056  
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)   Fisher 7365-45-9  
ethylenediaminetetraacetic acid (EDTA)   Sigma-Aldrich 431788  
Spectra/Por 2 Dialysis Tubing   Spectrum Labs 132678  
Sterile Syringe Filter (0.2 μm)   VWR 281445-477  
Cellulos Nitrate Membrane Filters (0.45 μm)   Whatman 7184-004  
VP-ITC   MicroCal VP-ITC Microcalorimeter used for measurements
ThermoVac   MicroCal USB Thermo Vac Temperature Controlled Degassing Station

References

  1. Cliff, M. J., Ladbury, J. E. A survey of the year 2002 literature on applications of isothermal titration calorimetry. Journal of Molecular Recognition. 16, 383-391 (2003).
  2. Cliff, M. J., Gutierrez, A., Ladbury, J. E. A survey of the year 2003 literature on applications of isothermal titration calorimetry. Journal of Molecular Recognition. 17, 513-523 (2004).
  3. Ababou, A., Ladbury, J. E. Survey of the year 2004: literature on applications of isothermal titration calorimetry. Journal of Molecular Recognition. 19, 79-89 (2006).
  4. Ababou, A., Ladbury, J. E. Survey of the year 2005: literature on applications of isothermal titration calorimetry. Journal of Molecular Recognition. 20, 4-14 (2007).
  5. Okhrimenko, O. k. s. a. n. a., J, I. A survey of the year 2006 literature on applications of isothermal titration calorimetry. Journal of Molecular Recognition. 21, 1-19 (2008).
  6. Bjelic, S., Jelesarov, I. A survey of the year 2007 literature on applications of isothermal titration calorimetry. Journal of Molecular Recognition. 21, 289-312 (2008).
  7. Leavitt, S., Freire, E. Direct measurement of protein binding energetics by isothermal titration calorimetry. Current Opinion in Structural Biology. 11, 560-566 (2001).
  8. Wiseman, T., Williston, S., Brandts, J. F., Lin, L. -. N. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Analytical Biochemistry. 179, 131-137 (1989).
  9. Capaldi, S. The X-Ray Structure of Zebrafish (Danio rerio) Ileal Bile Acid-Binding Protein Reveals the Presence of Binding Sites on the Surface of the Protein Molecule. Journal of Molecular Biology. 385, 99-116 (2009).
  10. Freiburger, L. A., Auclair, K., Mittermaier, A. K. Elucidating Protein Binding Mechanisms by Variable-c ITC. ChemBioChem. 10, 2871-2873 (2009).
  11. Wybenga-Groot, L. E., Draker, K. -. a., Wright, G. D., Berghuis, A. M. Crystal structure of an aminoglycoside 6′-N-acetyltransferase: defining the GCN5-related N-acetyltransferase superfamily fold. Structure. 7, 497-507 (1999).
  12. Draker, K., Northrop, D. B., Wright, G. D. Kinetic Mechanism of the GCN5-Related Chromosomal Aminoglycoside Acetyltransferase AAC(6′)-Ii from Enterococcus faecium: Evidence of Dimer Subunit Cooperativity. Biochemistry. 42, 6565-6574 (2003).
  13. Wright, G. D., Ladak, P. Overexpression and characterization of the chromosomal aminoglycoside 6′-N-acetyltransferase from Enterococcus faecium. Antimicrob. Agents Chemother. 41, 956-960 (1997).
  14. MicroCal. . ITC Data Analysis in Origin. , (2004).

Play Video

Cite This Article
Freiburger, L. A., Mittermaier, A. K., Auclair, K. Collecting Variable-concentration Isothermal Titration Calorimetry Datasets in Order to Determine Binding Mechanisms. J. Vis. Exp. (50), e2529, doi:10.3791/2529 (2011).

View Video