Summary

脂質ラフトの決定は、蛍光相関分光法(FCS)による生細胞の蛍光タグ付きプローブの分割

Published: April 06, 2012
doi:

Summary

生きた細胞の原形質膜における蛍光タンパク質の脂質ラフトのパーティショニングを調べるための手法が説明されています。これは、脂質ラフトの内側または外側に位置するタンパク質の拡散時間に格差を利用しています。買収は、コントロール条件でまたは薬物を添加した後、動的に実行することができます。

Abstract

過去15年間で、細胞膜が均一ではありませんし、その機能を発揮するマイクロドメインに依存している概念は広く受け入れられるようになっています。脂質ラフトは、コレステロールとスフィンゴ脂質に富んだ細胞膜マイクロドメインである。彼らはこのようなシグナル伝達などの細胞生理学的プロセスにおいて役割を果たしており、人身売買の1,2だけでなく、ウイルスや細菌感染症や神経変性疾患の3を含むいくつかの疾患の主要なプレーヤーであると考えられている。

まだ彼らの存在は依然として論争4,5の問題です。確かに、脂質ラフトの大きさは、このように彼らのダイレクトイメージングを排除し、はるかに、従来の顕微鏡の分解能の限界(200 nm付近)の下で、約20 nmの6であると推定されている。現在までに、脂質ラフト内の目的タンパク質のパーティションを評価するために使用される主な技術は、界面活性剤耐性膜(ラフト)抗体を用いた分離と共同パッチでした。でも広く使われているbeca彼らは、むしろ簡単な実装を使用して、これらの技術は工芸品に傾向があったので、7,8を批判した 。技術的な改良は、したがって、これらの工芸品を克服し、生きた細胞における脂質ラフトのパーティションを調べることができるように必要であった。

ここでは、生きた細胞の細胞膜に蛍光タグタンパク質や脂質の脂質ラフトパーティションの高感度分析手法を提案する。このメソッドは、蛍光相関分光法(FCS)と呼ばれる、脂質ラフトの内側または外側に位置する蛍光プローブの拡散時間の格差に依存しています。実際には、人工膜や細胞培養の両方で明らかなように、プローブは、はるかに高速外緻密な脂質ラフト9,10の内側よりも拡散するだろう。拡散時間を決定するために、分蛍光変動がある( 共焦点顕微鏡で細胞の細胞膜に位置し、焦点体積(約1フェムトリットル)内の時間の関数として測定される1)。自己相関曲線は、これらの変動から引き出され、適切な数学的拡散モデル11に取り付けることができます。

FCSは、それらが蛍光標識されている限り、様々なプローブのパーティショニング脂質ラフトを決定するために使用することができます。蛍光タグは、蛍光融合蛋白質の発現によって、または蛍光リガンドの結合によって達成することができます。また、FCSは、最近12を説明したように、人工の膜と細胞株でも初代培養だけでなく使用することができます。また、薬剤の添加や膜脂質組成の変化12の後にパーティショニング脂質ラフトの動態を追跡するために使うことができます。

Protocol

1。 FCSセットアップのキャリブレーション温度とCO 2制御のための共焦点顕微鏡、レーザー、コンピューター、インキュベーターを開始します。 SPAD(単一光子アバランシェダイオード)が上にあり、SPAD内部の蛍光フィルターはよくあなたのサンプルに適していることを確認してください。 SPADは、時間で同期されていることを確認します。あなたのSPAD設定が取得の準?…

Discussion

ここで紹介するFCS法は、生きた細胞への関心の蛍光プローブの分割脂質ラフトの高感度で迅速な分析を可能にします。 FCSは、単一光子計数の感度を持つ共焦点顕微鏡の局在化の精度を兼ね備えています。 FCS、標準的な生化学的手法の主な違いは、ラフトの分離又は共パッチの場合のようにFCSがターゲットの脂質ラフトのパーティションではなく、相対的なパーティションの絶対的な決定を?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

この作品は、AFP通信国立·デ·ラ·ルシェルシュ(ChoAD)からの助成金によってサポートされていました。我々はまた、財政支援のための財団ICM(研究所·デュ·CerveauらデラMoelle)に感謝しています。

Materials

Name of the reagent Company Catalogue number Comments
Cholera toxin subunit B-Alexa 488 Invitrogen C-34775 MW (pentamer) = 57 kg/mol
Confocal microscope Leica SP5  
Incubator for temperature and CO2 control Life imaging services The Cube and the Box  
SPAD (Single Photon Avalanche Diode) MPD (Micro Photon Devices) PDM serie (100 μm sensitive area)  
High pass 488 nm filter Semrock 488 nm blocking edge BrightLine long-pass filter
Part # FF01-488/LP-25
 
FCS detection unit Picoquant Picoharp 300 module  
Acquisition and auto-correlation software Picoquant SymPhoTime  
Fitting software OriginLab OriginPro8  

References

  1. Brown, D. A., London, E. Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14, 111-136 (1998).
  2. Simons, K., Gerl, M. J. Revitalizing membrane rafts: new tools and insights. Nat. Rev. Mol. Cell Biol. 11, 688-699 (2010).
  3. Simons, K., Ehehalt, R. Cholesterol, lipid rafts, and disease. J. Clin. Invest. 110, 597-603 (2002).
  4. Munro, S. Lipid rafts: elusive or illusive. Cell. , 115-377 (2003).
  5. Shaw, A. S. Lipid rafts: now you see them, now you don’t. Nat. Immunol. 7, 1139-1142 (2006).
  6. Pralle, A., Keller, P., Florin, E. L., Simons, K., Horber, J. K. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148, 997-1008 (2000).
  7. Brown, D. A., London, E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol Chem. 275, 17221-17224 (2000).
  8. Sharma, P., Sabharanjak, S., Mayor, S. Endocytosis of lipid rafts: an identity crisis. Semin. Cell Dev. Biol. 13, 205-214 (2002).
  9. Kahya, N., Scherfeld, D., Bacia, K., Poolman, B., Schwille, P. Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy. J. Biol. Chem. 278, 28109-28115 (2003).
  10. Bacia, K., Scherfeld, D., Kahya, N., Schwille, P. Fluorescence correlation spectroscopy relates rafts in model and native membranes. Biophys J. 87, 1034-1043 (2004).
  11. Kim, S. A., Heinze, K. G., Schwille, P. Fluorescence correlation spectroscopy in living cells. Nat. Methods. 4, 963-973 (2007).
  12. Marquer, C. Local cholesterol increase triggers amyloid precursor protein-Bace1 clustering in lipid rafts and rapid endocytosis. FASEB J. 25, 1295-1305 (2011).
  13. Tian, Y., Martinez, M. M., Pappas, D. Fluorescence correlation spectroscopy: a review of biochemical and microfluidic applications. Appl. Spectrosc. 65, 115A-124A (2011).
  14. Haustein, E., Schwille, P. Fluorescence correlation spectroscopy: novel variations of an established technique. Annu. Rev. Biophys. Biomol. Struct. 36, 151-169 (2007).
  15. Ilien, B. Pirenzepine promotes the dimerization of muscarinic M1 receptors through a three-step binding process. J. Biol. Chem. 284, 19533-19543 (2009).
  16. Lieto, A. M., Cush, R. C., Thompson, N. L. Ligand-receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy. Biophys. J. 85, 3294-3302 (2003).
  17. Thompson, N. L., Burghardt, T. P., Axelrod, D. Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy. Biophys. J. 33, 435-454 (1981).
  18. Thompson, N. L., Steele, B. L. Total internal reflection with fluorescence correlation spectroscopy. Nat. Protoc. 2, 878-890 (2007).
  19. Eggeling, C. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature. 457, 1159-1162 (2009).
  20. Kolin, D. L., Wiseman, P. W. Advances in image correlation spectroscopy: measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells. Cell Biochem. Biophys. 49, 141-164 (2007).
  21. Shvartsman, D. E., Kotler, M., Tall, R. D., Roth, M. G., Henis, Y. I. Differently anchored influenza hemagglutinin mutants display distinct interaction dynamics with mutual rafts. J. Cell Biol. 163, 879-888 (2003).
  22. White, R. Holin triggering in real time. Proc. Natl. Acad. Sci. U.S.A. 108, 798-803 (2011).
  23. Petersen, N. O., Hoddelius, P. L., Wiseman, P. W., Seger, O., Magnusson, K. E. Quantitation of membrane receptor distributions by image correlation spectroscopy: concept and application. Biophys. J. 65, 1135-1146 (1993).
  24. Hebert, B., Costantino, S., Wiseman, P. W. Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells. Biophys. J. 88, 3601-3614 (2005).
  25. Digman, M. A. Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys. J. 89, 1317-1327 (2005).
  26. Digman, M. A. Fluctuation correlation spectroscopy with a laser-scanning microscope: exploiting the hidden time structure. Biophys. J. 88, L33-L36 (2005).
  27. Nohe, A., Keating, E., Fivaz, M., van der Goot, F. G., Petersen, N. O. Dynamics of GPI-anchored proteins on the surface of living cells. Nanomedicine. 2, 1-7 (2006).
  28. Semrau, S., Schmidt, T. Particle image correlation spectroscopy (PICS): retrieving nanometer-scale correlations from high-density single-molecule position data. Biophys. J. 92, 613-621 (2007).
  29. Bates, I. R. Membrane lateral diffusion and capture of CFTR within transient confinement zones. Biophys. J. 91, 1046-1058 (2006).
check_url/3513?article_type=t

Play Video

Cite This Article
Marquer, C., Lévêque-Fort, S., Potier, M. Determination of Lipid Raft Partitioning of Fluorescently-tagged Probes in Living Cells by Fluorescence Correlation Spectroscopy (FCS). J. Vis. Exp. (62), e3513, doi:10.3791/3513 (2012).

View Video