Summary

动脉粥样硬化斑块的活动和血管炎症的定量使用[18 F],氟正电子发射断层扫描/电脑断层扫描(FDG-PET/CT)

Published: May 02, 2012
doi:

Summary

有很大的需要,以确定动脉粥样硬化的非侵入性,在这里,我们演示了如何FDG-PET/CT可用于检测和量化动脉粥样硬化斑块的活动和血管炎症。

Abstract

传统的非侵入性动脉粥样硬化的成像方式,如冠状动脉钙化(CAC)和颈动脉内膜中层厚度(IMT)的2提供有关的疾病负担。然而,尽管3-5成飞,和C-IMT的2,6多个验证研究,这些方式都无法准确评估斑块的特点7,8,和斑块的组成和炎症状态决定了其稳定性,因此,风险9-13临床事件。

[18 F],2 -氟-2 -脱氧-D-葡萄糖(葡萄糖)利用正电子发射断层扫描(PET)/电脑断层扫描(CT)的影像已被广泛研究在肿瘤学代谢14,15。在人类使用的动物模型和免疫组化的研究表明,FDG-PET/CT是精美的敏感检测巨噬细胞活性,细胞在血管壁炎症的重要来源。莫重新最近,我们17,18和其他人已经表明,FDG-PET/CT使高度精确,在9,16,19,20大型和中型动脉粥样硬化斑块的活动抗炎活性的新型测量。 FDG-PET/CT研究具有比其他成像方式的许多优点:1)高对比度的决议; 2)斑块体积的定量和代谢活性允许多式联运动脉粥样硬化斑块的定量; 3)动态,实时, 体内成像; 4)最小的运营商的依赖。最后,血管炎症FDG-PET/CT检测已被证明预测心血管(CV)事件独立于传统的危险因素,21,2223动脉粥样硬化的总体负担也高度相关。的牌匾FDG-PET/CT活动调制知名有益的简历干预措施,如短期(12周)他汀类药物治疗24以及长远的治疗性生活方式改变(16月)25。 </P>

目前在动脉粥样硬化斑块的FDG摄取的量化方法涉及测量,以计算目标背景比(TBR的),这是除以计算标准化摄取值(SUV)的利益动脉和静脉血泊由动脉静脉血泊SUV越野车。表明该方法稳定,重复性型代表随着时间的推移,具有灵敏度高,检测血管炎症,也有高间内读者可靠性26。在这里,我们提出我们的方法为患者准备,图像采集,量化使用的SUV,TBR,一个全球性的参数,动脉粥样硬化斑块的活动和血管炎症,称为代谢体积产品(MVP)。这些方法可应用于各种利益一致的方式研究样本,以评估血管炎症,因为我们已经在多个以前的出版物中。9,20,27,28 </ SUP>

Protocol

1。病人的制备及获取图像固定的PET / CT扫描仪至少一个小时的成像时间槽,最好用飞行时间,提高图像质量的能力之一。在我们的机构,我们使用双子座TF扫描仪,这是最新的PET / CT系统,飞利浦医疗系统,并结合在PET扫描仪与华晨16层CT系统对溶菌酶探测器的基础。 有科目快8小时前FDG-PET/CT扫描。检查空腹血清葡萄糖(FSG)的水平,用指尖,以保证血糖<200 mg / dL的葡萄糖管理之前…

Discussion

这里介绍的方法是直接执行,并能产生有用信息,对动脉粥样硬化斑块的活动和血管炎症,在临床上显着的动脉床。这种分析方法有一些值得重视的重要功能:1)我们使用高品质的PET / CT扫描仪,其中有16个探测器行和飞行时间的能力; 2)我们利用两个失明的临床资料,以经验丰富的观察员进行测量,以确保量化数据的一致性; 3)我们同时描述四个量化的成果,这是每一个信息。我们建议至少动?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

NNM支持拨款从国家牛皮癣基金会,的NHLBI 5K23HL97151-3和HL111293。 ,JMG是支持由NHLBI以R01 HL089744和以R01 HL111293。

Materials

Name of the Equipment Company
Gemini TF PET/CT Scanner Philips Healthcare
Extended Brilliance Workstation Philips Healthcare

References

  1. Church, T. S. Coronary artery calcium score, risk factors, and incident coronary heart disease events. Atherosclerosis. 190, 224-231 (2007).
  2. Kathiresan, S. Assessment by cardiovascular magnetic resonance, electron beam computed tomography, and carotid ultrasonography of the distribution of subclinical atherosclerosis across Framingham risk strata. Am. J. Cardiol. 99, 310-314 (2007).
  3. Detrano, R. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N. Engl. J. Med. 358, 1336-1345 (2008).
  4. Raggi, P., Cooil, B., Ratti, C., Callister, T. Q., Budoff, M. Progression of Coronary Artery Calcium and Occurrence of Myocardial Infarction in Patients With and Without Diabetes Mellitus. Hypertension. , (2005).
  5. Arad, Y., Goodman, K. J., Roth, M., Newstein, D., Guerci, A. D. Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: the St. Francis Heart Study. J. Am. Coll. Cardiol. 46, 158-165 (2005).
  6. Lorenz, M. W., Markus, H. S., Bots, M. L., Rosvall, M., Sitzer, M. Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation. 115, 459-467 (2007).
  7. Doherty, T. M., Detrano, R. C., Mautner, S. L., Mautner, G. C., Shavelle, R. M. Coronary calcium: the good, the bad, and the uncertain. Am. Heart. J. 137, 806-814 (1999).
  8. Detrano, R. C. Coronary calcium does not accurately predict near-term future coronary events in high-risk adults. Circulation. 99, 2633-2638 (1999).
  9. Chen, W., Bural, G. G., Torigian, D. A., Rader, D. J., Alavi, A. Emerging role of FDG-PET/CT in assessing atherosclerosis in large arteries. Eur. J. Nucl. Med. Mol. Imaging. 36, 144-151 (2009).
  10. Doherty, T. M. Calcification in atherosclerosis: bone biology and chronic inflammation at the arterial crossroads. Proc. Natl. Acad. Sci. U.S.A. 100, 11201-11206 (2003).
  11. Fuster, V. Lewis A. Conner Memorial Lecture. Mechanisms leading to myocardial infarction: insights from studies of vascular biology. Circulation. 90, 2126-2146 (1994).
  12. van der Wal, A. C., Becker, A. E., van der Loos, C. M., Das, P. K. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation. 89, 36-44 (1994).
  13. van der Wal, A. C., Becker, A. E., van der Loos, C. M., Tigges, A. J., Das, P. K. Fibrous and lipid-rich atherosclerotic plaques are part of interchangeable morphologies related to inflammation: a concept. Coron. Artery Dis. 5, 463-469 (1994).
  14. Alavi, A. Positron emission tomography imaging of regional cerebral glucose metabolism. Semin. Nucl. Med. 16, 2-34 (1986).
  15. Hustinx, R. Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in the head and neck. Eur. J. Nucl. Med. 26, 1345-1348 (1999).
  16. Ogawa, M. (18)F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. J. Nucl. Med. 45, 1245-1250 ( ).
  17. Yun, M. F-18 FDG uptake in the large arteries: a new observation. Clin. Nucl. Med. 26, 314-319 (2001).
  18. Mehta, N. N. Systemic and Vascular Inflammation in Patients With Moderate to Severe Psoriasis as Measured by [18F]-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography (FDG-PET/CT): A Pilot Study. Arch. Dermatol. , .
  19. Davies, J. R. FDG-PET can distinguish inflamed from non-inflamed plaque in an animal model of atherosclerosis. Int. J. Cardiovasc. Imaging. 26, 41-48 (2011).
  20. Bural, G. G. FDG-PET is an effective imaging modality to detect and quantify age-related atherosclerosis in large arteries. Eur. J. Nucl. Med. Mol. Imaging. 35, 562-569 (2008).
  21. Arauz, A., Hoyos, L., Zenteno, M., Mendoza, R., Alexanderson, E. Carotid plaque inflammation detected by 18F-fluorodeoxyglucose-positron emission tomography. Pilot study. Clin. Neurol. Neurosurg. 109, 409-412 (2007).
  22. Rominger, A. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J. Nucl. Med. 50, 1611-1620 (2009).
  23. Wasselius, J. A., Larsson, S. A., Jacobsson, H. FDG-accumulating atherosclerotic plaques identified with 18F-FDG-PET/CT in 141 patients. Mol. Imaging Biol. 11, 455-459 (2009).
  24. Tahara, N. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J. Am. Coll. Cardiol. 48, 1825-1831 (2006).
  25. Lee, S. J. Reversal of vascular 18F-FDG uptake with plasma high-density lipoprotein elevation by atherogenic risk reduction. J. Nucl. Med. 49, 1277-1282 (2008).
  26. Rudd, J. H. (18)Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J. Am. Coll. Cardiol. 50, 892-896 ( ).
  27. Bural, G. G. A pilot study of changes in (18)F-FDG uptake, calcification and global metabolic activity of the aorta with aging. Hell. J. Nucl. Med. 12, 123-128 (2009).
  28. Bural, G. G. Quantitative assessment of the atherosclerotic burden of the aorta by combined FDG-PET and CT image analysis: a new concept. Nucl. Med. Biol. 33, 1037-1043 (2006).
check_url/3777?article_type=t

Play Video

Cite This Article
Mehta, N. N., Torigian, D. A., Gelfand, J. M., Saboury, B., Alavi, A. Quantification of Atherosclerotic Plaque Activity and Vascular Inflammation using [18-F] Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography (FDG-PET/CT). J. Vis. Exp. (63), e3777, doi:10.3791/3777 (2012).

View Video