Summary

मानव स्वदेशी लार लॉलीपॉप की तरह एक ultrafiltration जांच का प्रयोग Peptidome नमूनाकरण: सरल और क्लीनिकल मास स्पेक्ट्रोमेट्री के लिए पेप्टाइड जांच बढ़ाएँ

Published: August 07, 2012
doi:

Summary

भविष्य नैदानिक ​​आवेदन के लिए लार के नमूने को ध्यान में रखते हुए, लॉलीपॉप की तरह एक ultrafiltration जांच (LLUF) के मानव मौखिक गुहा में फिट था गढ़े. NanoLC-LTQ मास स्पेक्ट्रोमेट्री से पचाया नहीं लार की प्रत्यक्ष विश्लेषण LLUF जांच की क्षमता के लिए बड़ी प्रोटीन और उच्च बहुतायत प्रोटीन हटाने के लिए, और कम प्रचुर पेप्टाइड्स अधिक से detectable का प्रदर्शन किया.

Abstract

Although human saliva proteome and peptidome have been revealed 1-2 they were majorly identified from tryptic digests of saliva proteins. Identification of indigenous peptidome of human saliva without prior digestion with exogenous enzymes becomes imperative, since native peptides in human saliva provide potential values for diagnosing disease, predicting disease progression, and monitoring therapeutic efficacy. Appropriate sampling is a critical step for enhancement of identification of human indigenous saliva peptidome. Traditional methods of sampling human saliva involving centrifugation to remove debris 3-4 may be too time-consuming to be applicable for clinical use. Furthermore, debris removal by centrifugation may be unable to clean most of the infected pathogens and remove the high abundance proteins that often hinder the identification of low abundance peptidome.

Conventional proteomic approaches that primarily utilize two-dimensional gel electrophoresis (2-DE) gels in conjugation with in-gel digestion are capable of identifying many saliva proteins 5-6. However, this approach is generally not sufficiently sensitive to detect low abundance peptides/proteins. Liquid chromatography-Mass spectrometry (LC-MS) based proteomics is an alternative that can identify proteins without prior 2-DE separation. Although this approach provides higher sensitivity, it generally needs prior sample pre-fractionation 7 and pre-digestion with trypsin, which makes it difficult for clinical use.

To circumvent the hindrance in mass spectrometry due to sample preparation, we have developed a technique called capillary ultrafiltration (CUF) probes 8-11. Data from our laboratory demonstrated that the CUF probes are capable of capturing proteins in vivo from various microenvironments in animals in a dynamic and minimally invasive manner 8-11. No centrifugation is needed since a negative pressure is created by simply syringe withdrawing during sample collection. The CUF probes combined with LC-MS have successfully identified tryptic-digested proteins 8-11. In this study, we upgraded the ultrafiltration sampling technique by creating a lollipop-like ultrafiltration (LLUF) probe that can easily fit in the human oral cavity. The direct analysis by LC-MS without trypsin digestion showed that human saliva indigenously contains many peptide fragments derived from various proteins. Sampling saliva with LLUF probes avoided centrifugation but effectively removed many larger and high abundance proteins. Our mass spectrometric results illustrated that many low abundance peptides became detectable after filtering out larger proteins with LLUF probes. Detection of low abundance saliva peptides was independent of multiple-step sample separation with chromatography. For clinical application, the LLUF probes incorporated with LC-MS could potentially be used in the future to monitor disease progression from saliva.

Protocol

1. LLUF जांच का निर्माण polyethersulfone झिल्ली (2 2 सेमी) त्रिकोण polypropylene के paddles के साथ (कैलिफोर्निया विश्वविद्यालय, सैन डिएगो) paddles के सीमाओं पर epoxy के साथ gluing झिल्ली द्वारा सील किया गया. 30 केडीए में एक आणविक वजन कट ऑफ (MWCO…

Discussion

हमने पाया है कि कई पेप्टाइड टुकड़े पचाया नहीं मानव लार में मौजूद हैं. इन पेप्टाइड टुकड़ों प्रोलाइन युक्त प्रोटीन, actin, अल्फा amylase, एक ग्लोबिन अल्फा, बीटा ग्लोबिन, 1 histain, केरातिन 1, 7 mucin, polymeric इम्मुनोग्लोबुलिन रिस…

Disclosures

The authors have nothing to disclose.

Acknowledgements

यह काम राष्ट्रीय संस्थानों स्वास्थ्य अनुदान (R01-01-AI067395, R21-R022754-01, और R21 I58002-01) द्वारा समर्थित किया गया. हम सी. Niemeyer पांडुलिपि के महत्वपूर्ण पढ़ने के लिए धन्यवाद.

Materials

Name of the reagent Company Catalog number Comments
Polyethersulfone membranes Pall Corporation   30 kDa MWCO
Teflon fluorinated ethylene propylene tube Upchurch Scientific    
Blue dextran Sigma    
Nano LC system Eksigent    
C18 trap column Agilent 5065-9913  
LTQ linear ion-trap mass spectrometer Thermo Fisher    
Sorcerer 2 Sage-N Research    
Acetonitrile-0.1% formic acid J.T. Baker 9832-03 LC/MS grade
Water-0.1% formic acid J.T. Baker 9834-03 LC/MS grade

References

  1. Denny, P. The proteomes of human parotid and ubmandibular/sublingual gland salivas collected as the ductal secretions. J. Proteome Res. 7, 1994-2006 (2008).
  2. Hu, S., Loo, J. A., Wong, D. T. Human saliva proteome analysis. Ann. N.Y. Acad. Sci. 1098, 323-329 (2007).
  3. Ng, D. P., Koh, D., Choo, S. G., Ng, V., Fu, Q. Effect of storage conditions on the extraction of PCR-quality genomic DNA from saliva. Clin. Chim. Acta. 343, 191-194 (2004).
  4. Wade, S. E. An oral-diffusion-sink device for extended sampling of multiple steroid hormones from saliva. Clin. Chem. 38, 1878-1882 (1992).
  5. Hu, S. Large-scale identification of proteins in human salivary proteome by liquid chromatography/mass spectrometry and two-dimensional gel electrophoresis-mass spectrometry. Proteomics. 5, 1714-1728 (2005).
  6. Huang, C. M. Comparative proteomic analysis of human whole saliva. Arch. Oral Biol. 49, 951-962 (2004).
  7. Guerrier, L., Lomas, L., Boschetti, E. A simplified monobuffer multidimensional chromatography for high-throughput proteome fractionation. J Chromatogr. A. 1073, 25-33 (2005).
  8. Huang, C. M., Wang, C. C., Kawai, M., Barnes, S., Elmets, C. A. Surfactant sodium lauryl sulfate enhances skin vaccination: molecular characterization via a novel technique using ultrafiltration capillaries and mass spectrometric proteomics. Mol. Cell Proteomics. 5, 523-532 (2006).
  9. Huang, C. M., Wang, C. C., Kawai, M., Barnes, S., Elmets, C. A. In vivo protein sampling using capillary ultrafiltration semi-permeable hollow fiber and protein identification via mass spectrometry-based proteomics. J. Chromatogr. A. 1109, 144-151 (2006).
  10. Huang, C. M., Wang, C. C., Barnes, S., Elmets, C. A. In vivo detection of secreted proteins from wounded skin using capillary ultrafiltration probes and mass spectrometric proteomics. Proteomics. 6, 5805-5814 (2006).
  11. Huang, C. M. Mass spectrometric proteomics profiles of in vivo tumor secretomes: capillary ultrafiltration sampling of regressive tumor masses. Proteomics. 6, 6107-6116 (2006).
  12. Ahmed, N. An approach to remove albumin for the proteomic analysis of low abundance biomarkers in human serum. Proteomics. 3, 1980-1987 (2006).
  13. Michishige, F. Effect of saliva collection method on the concentration of protein components in saliva. J. Med. Invest. 53, 140-146 (2006).
  14. Kruger, C., Breunig, U., Biskupek-Sigwart, J., Dorr, H. G. Problems with salivary 17-hydroxyprogesterone determinations using the Salivette device. Eur. J. Clin. Chem. Clin. Biochem. 34, 926-929 (1996).
  15. Luque-Garcia, J. L., Neubert, T. A. Sample preparation for serum/plasma profiling and biomarker identification by mass spectrometry. J. Chromatogr. A. 1153, 259-276 (2007).
  16. Ramstrom, M. Depletion of high-abundant proteins in body fluids prior to liquid chromatography fourier transform ion cyclotron resonance mass spectrometry. J. Proteome. Res. 4, 410-416 (2005).
  17. Messana, I. Characterization of the human salivary basic proline-rich protein complex by a proteomic approach. J. Proteome. Res. 3, 792-800 (2004).
  18. Li, T. Possible release of an ArgGlyArgProGln pentapeptide with innate immunity properties from acidic proline-rich proteins by proteolytic activity in commensal streptococcus and actinomyces species. Infect. Immun. 68, 5425-5429 (2000).
  19. Davtyan, T. K., Manukyan, H. A., Mkrtchyan, N. R., Avetisyan, S. A., Galoyan, A. A. Hypothalamic proline-rich polypeptide is a regulator of oxidative burst in human neutrophils and monocytes. Neuroimmunomodulation. 12, 270-284 (2005).
  20. Jonsson, A. P. Gln-Gly cleavage: correlation between collision-induced dissociation and biological degradation. J. Am. Soc. Mass Spectrom. 12, 337-342 (2001).
  21. Gibbons, R. J., Hay, D. I., Schlesinger, D. H. Delineation of a segment of adsorbed salivary acidic proline-rich proteins which promotes adhesion of Streptococcus gordonii to apatitic surfaces. Infect Immun. 59, 2948-2954 (1991).
  22. Li, T., Johansson, I., Hay, D. I., Stromberg, N. Strains of Actinomyces naeslundii and Actinomyces viscosus exhibit structurally variant fimbrial subunit proteins and bind to different peptide motifs in salivary proteins. Infect Immun. 67, 2053-2059 (1999).
  23. Hardt, M. Toward defining the human parotid gland salivary proteome and peptidome: identification and characterization using 2D SDS-PAGE, ultrafiltration, HPLC, and mass spectrometry. Biochemistry. 44, 2885-2899 (2005).
  24. Wilmarth, P. A. Two-dimensional liquid chromatography study of the human whole saliva proteome. J. Proteome Res. 3, 1017-1023 (2004).
  25. Saitoh, E., Isemura, S., Sanada, K. Complete amino acid sequence of a basic proline-rich peptide, P-D, from human parotid saliva. J. Biochem. 93, 495-502 (1983).
  26. Slomiany, B. L., Piotrowski, J., Czajkowski, A., Shovlin, F. E., Slomiany, A. Differential expression of salivary mucin bacterial aggregating activity with caries status. Int. J. Biochem. 25, 935-940 (1993).
  27. Juarez, Z. E., Stinson, M. W. An extracellular protease of Streptococcus gordonii hydrolyzes type IV collagen and collagen analogues. Infect Immun. 67, 271-278 (1999).
  28. Lo, C. S., Hughes, C. V. Identification and characterization of a protease from Streptococcus oralis C104. Oral Microbiol. Immunol. 11, 181-187 (1996).
  29. Harrington, D. J., Russell, R. R. Identification and characterisation of two extracellular proteases of Streptococcus mutans. FEMS Microbiol. Lett. 121, 237-241 (1994).
  30. Huang, C. M. In vivo secretome sampling technology for proteomics. Proteomics Clin. Appl. 1, 953-962 (2007).
  31. Skepo, M., Linse, P., Arnebrant, T. Coarse-grained modeling of proline rich protein 1 (PRP-1) in bulk solution and adsorbed to a negatively charged surface. J. Phys. Chem. B. 110, 12141-12148 (2006).
  32. Losic, D., Rosengarten, G., Mitchell, J. G., Voelcker, N. H. Pore architecture of diatom frustules: potential nanostructured membranes for molecular and particle separations. J. Nanosci. Nanotechnol. 6, 982-989 (2006).
  33. Linhares, M. C., Kissinger, P. T. Pharmacokinetic monitoring in subcutaneous tissue using in vivo capillary ultrafiltration probes. Pharm Res. 10, 598-602 (1993).
  34. Li, W., Hendrickson, C. L., Emmett, M. R., Marshall, A. G. Identification of intact proteins in mixtures by alternated capillary liquid chromatography electrospray ionization and LC ESI infrared multiphoton dissociation Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 71, 4397-4402 (1999).
  35. Whitelegge, J. P. Protein-Sequence Polymorphisms and Post-translational Modifications in Proteins from Human Saliva using Top-Down Fourier-transform Ion Cyclotron Resonance Mass Spectrometry. Int. J. Mass Spectrom. 268, 190-197 (2007).
  36. Castro, P., Tovar, J. A., Jaramillo, L. Adhesion of Streptococcus mutans to salivary proteins in caries-free and caries-susceptible individuals. Acta Odontol. Latinoam. 19, 59-66 (2006).
  37. Challacombe, S. J., Sweet, S. P. Oral mucosal immunity and HIV infection: current status. Oral Dis. 8, 55-62 (2002).
  38. Jensen, J. L. Salivary acidic proline-rich proteins in rheumatoid arthritis. Ann. N.Y. Acad. Sci. 842, 209-211 (1998).
check_url/4108?article_type=t

Play Video

Cite This Article
Zhu, W., Gallo, R. L., Huang, C. Sampling Human Indigenous Saliva Peptidome Using a Lollipop-Like Ultrafiltration Probe: Simplify and Enhance Peptide Detection for Clinical Mass Spectrometry. J. Vis. Exp. (66), e4108, doi:10.3791/4108 (2012).

View Video