Summary

通过Bioorthogonal点击化学化学选择性病毒表面改性

Published: August 19, 2012
doi:

Summary

腺病毒颗粒设计,含有非天然氨基酸类似物azidohomoalanine或叠氮糖<em>Ø</em> GlcNAz。每叠组chemoselectively结扎通过“点击”化学反应病毒表面改性的一种手段。

Abstract

病毒颗粒的修改已收到的关注显着,其影响的基因治疗,溶瘤应用和疫苗开发的巨大潜力。1,2,3修改病毒的表面,其中大多是遗传学的基础,当前的方法往往受到衰减生产病毒,传染性和细胞转导。4,5使用化学选择性的点击化学,我们已经开发出一个简单的替代方法回避这些问题,同时保持高度灵活和方便。1,2

本议定书的目标是展示使用bioorthogonal点击化学修改的5型腺病毒颗粒表面的成效。可用于同时治疗1或分析,2,6这两个步骤的过程,作为靶向分子,染料或其他分子的化学选择性结扎允许到蛋白质预先标记叠标签。这种方法的三个主要优点是:(1)代谢标记表明几乎没有病毒健身的影响,1,7(2)广泛的效应配体可以利用,(3)它是非常快速,可靠和易于访问。1,2,7

在此过程的第一步,腺病毒颗粒生产轴承要么azidohomoalanine(AHA,蛋氨酸的替代)或不自然的糖O型 N-azidoacetylglucosamine( GlcNAz),它们都含有叠氮化物(氮3)功能组。净化后的叠改性病毒颗粒,包含:TAMRA荧光基炔探头结扎预标记的蛋白质或糖蛋白在化学选择性的方式。最后,进行SDS-PAGE分析证明到病毒衣壳蛋白探头成功结扎。阿哈纳入标记所有病毒衣壳蛋白(Hexon蛋白,聚氯和光纤),而O型 GlcNAz只标签纤维掺入结果。

在这个不断发展的领域,已成功开发出多个叠 – 炔结扎方法,但是只有两个我们已经找到了,是最方便的证明本 – 促进应变叠氮化物 – 炔环加成(SPAAC)和铜催化的叠炔环加成(CuAAC)在无氧气氛下。

Protocol

请参阅表1,准备在这个协议中引用的所有媒体,缓冲区和解决方案。 1。生产的AHA-标记的腺病毒准备人类胚胎肾脏细胞11 100毫米组织培养皿(HEK 293)( 见表1)在HEK 293细胞的生长介质保持在37°C,直到他们达到80 – 90%汇合。 (注:文化的汇合90%以上的感染,可能不会产生所需的病毒可能很难。) 松开的菜肴之一,首先消除的生长介…

Discussion

在化学选择性和bioorthogonal点击反应,包括叠氮化合物的的发展是一个发展迅速的研究领域,以及随后出现的这些反应越来越多的选择,从生物耦合应用。我们已经限制了该协议的范围包括在我们自己的实验室和所有试剂的商业可用性的方法,因为它们的用途选择只有两个。

在第一个这样的路线-应变促进叠-炔环加成(SPAAC) -炔载内cyclooctyne环( 图2a)。这是最近…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们要感谢国家科学基金会拨款(CBET-0846259)。

Materials

Name of the reagent Company Catalogue number
Adenovirus type 5 (Ad5) containing a GFP transgene BCBC 391
Human Embryonic Kidney (HEK 293) cells ATCC CRL-1573
Dulbecco’s Modified Eagle Medium (DMEM), High Glucose Invitrogen 11965-092
Dulbecco’s Modified Eagle Medium, no Methionine, no Cysteine (DMEM -Met / -Cys), High Glucose Invitrogen 21013-024
Bovine Calf Serum Invitrogen 16170-078
Penicillin – Streptomycin 100× Solution (Pen Strep) Invitrogen 15140-122
0.5% Trypsin-EDTA (10×) Invitrogen 15400-054
100 mm Cell Culture Dish, tissue-culture treated polystyrene BD Falcon 353003
Cell culture CO2 incubator    
Hemocytometer    
Biosafety cabinet    
Sterile syringe filter (0.2 μm, cellulose acetate) VWR 28145-477 (NA), 514-0061 (Europe)
Avanti J-E centrifuge Beckman Coulter 369001
Conical tubes (50 ml, sterile) BD Falcon 352098
Tube, Thinwall, Ultra-Clear, 13.2 ml, 14 x 89 mm Beckman 344059
Ultracentrifuge equipped with an SW 41 and SW 60 rotor Beckman  
Eppendorf Biopur Safe-Lock Tubes, 1.5 ml Eppendorf 0030 121.589
Centrifuge 5418 Eppendorf 5418
Centri-Sep gel filtration spin columns Princeton Separations CS-901
Sterile needle, 18 gauge    
Nitrogen glove bag (if deoxygenated CuAAC is to be performed)    
Dewar flask    
Liquid nitrogen    
Electrophoresis cell    
Fluorescent gel scanner    
Ready Gel Tris-HCl Gel Bio-Rad 161-1105
L-Azidohomoalanine AnaSpec 63669
Jena Biosciences CLK-AA005  
Peracetylated N-azidoacetylgalactosamine (Ac4GalNAz) Invitrogen C33365
Thermo Scientific 88905  
Sigma-Aldrich A7480  
Bathophenanthroline disulfonic acid (BDA) disodium salt MP Biomedicals 0215011201
Dimethyl sulfoxide (DMSO)    
Methanol    
Tris base (tris(hydroxymethyl)aminomethane)    
Disodium Phosphate (Na2HPO4)    
Phosphate buffered saline (PBS)    
1M HCl    
Glycerol    
Bovine Serum Albumin    
L-cysteine    
L-methionine    
SDS (sodium dodecyl sulfate)    
2-mercaptoethanol    
Glycine    
Bromophenol blue    
Cesium Chloride (CsCl)    
Copper(I) Bromide (CuBr)    
Calcium Chloride (CaCl2)    
Potassium Chloride (KCl)    
Magnesium Chloride (MgCl2)    
Sodium Chloride (NaCl)    
 
Alkyne probe for CuAAC*    
TAMRA Alkyne Invitrogen T10183
 
Strained alkyne probe for SPAAC*    
TAMRA DIBO Alkyne Invitrogen C10410

* Notable vendors of click chemistry reagents and kits include Invitrogen, Jena Biosciences, Berry Associates, Sigma-Aldrich, Glen Research, Click Chemistry Tools, and Baseclick. A variety of alkyne dyes and targeting ligands can be found in these vendors’ catalogs.

References

  1. Banerjee, P. S., Ostapchuk, P., Hearing, P., Carrico, I. S. Chemoselective Attachment of Small Molecule Effector Functionality to Human Adenoviruses Facilitates Gene Delivery to Cancer Cells. J. Am. Chem. Soc. 132, 13615-13617 (2010).
  2. Banerjee, P. S., Carrico, I. S. Chemoselective Modification of Viral Proteins Bearing Metabolically Introduced “Clickable” Amino Acids and Sugars. Methods Mol. Biol. 751, 55-66 (2011).
  3. Waehler, R., Russell, S. J., Curiel, D. T. Engineering targeted viral vectors for gene therapy. Nat. Rev. Genet. 8, 573-587 (2007).
  4. Magnusson, M. K., Hong, S. S., Henning, P., Boulanger, P., Lindholm, L. Genetic Retargeting of Adenovirus Vectors: Functionality of Targeting Ligands and Their Influence on Virus Viability. J. Gene Med. 4, 356-370 (2002).
  5. Henning, P., Lundgren, E., Carlsson, M., Frykholm, K., Johannisson, J., Magnusson, M. K., TÃ¥ng, E., Franqueville, L., Hong, S. S., Lindholm, L., Boulanger, P. Adenovirus Type 5 Fiber Knob Domain has a Critical Role in Fiber Protein Synthesis and Encapsidation. J. Gen. Virol. 87, 3151-3160 (2006).
  6. Zhang, M. M., Tsou, L. K., Charron, G., Raghavan, A. S., Hang, H. C. Tandem fluorescence imaging of dynamic S-acylation and protein turnover. Proc. Natl. Acad. Sci. U.S.A. 107, 8627-8632 (2010).
  7. Banerjee, P. S., Ostapchuk, P., Hearing, P., Carrico, I. S. Unnatural amino acid incorporation onto adenoviral (Ad) coat proteins facilitates chemoselective modification and retargeting of Ad type 5 vectors. J. Virol. 85, 7546-7554 (2011).
  8. Hong, V., Presolski, S. I., Ma, C., Finn, M. G. Analysis and Optimization of Copper-Catalyzed Azide-Alkyne Cycloaddition for Bioconjugation. Angew. Chem. Int. Ed. 48, 9879-9883 (2009).
  9. Best, M. D. Click Chemistry and Bioorthogonal Reactions: Unprecedented Selectivity in the Labeling of Biological Molecules. Biochemistry. 48, 6571-6584 (2009).
  10. Agard, N. J., Prescher, J. A., Bertozzi, C. R. A Strain-Promoted [3 + 2] Azide-Alkyne Cycloaddition for Covalent Modification of Biomolecules in Living Systems. J. Am. Chem. Soc. 46, 15046-15047 (2004).
  11. Dommerholt, J. Readily Accessible Bicyclononynes for Bioorthogonal Labeling and Three-Dimensional Imaging of Living Cells. Angew. Chem. Int. Ed. 49, 9422-9425 (2010).
  12. Link, A. J., Vink, M. K. S., Tirrell, D. A. Preparation of the functionalizable methionine surrogate azidohomoalanine via copper-catalyzed diazotransfer. Nat. Protoc. 2, 1879-1883 (2007).
check_url/4246?article_type=t

Play Video

Cite This Article
Rubino, F. A., Oum, Y. H., Rajaram, L., Chu, Y., Carrico, I. S. Chemoselective Modification of Viral Surfaces via Bioorthogonal Click Chemistry. J. Vis. Exp. (66), e4246, doi:10.3791/4246 (2012).

View Video