Summary

Axons, Dendrites और मस्तिष्क स्लाइसें में व्यक्तिगत न्यूरॉन्स के वृक्ष के समान spines से वोल्टेज के प्रति संवेदनशील डाई रिकॉर्डिंग

Published: November 29, 2012
doi:

Summary

उप सुक्ष्ममापी स्थानिक और उप millisecond अस्थायी समाधान के साथ झिल्ली संभावित परिवर्तनों की निगरानी के लिए एक इमेजिंग तकनीक वर्णित है. तकनीक, वोल्टेज के प्रति संवेदनशील रंगों के लेजर उत्तेजना, axons और collaterals अक्षतंतु टर्मिनल वृक्ष के समान शाखाओं, और व्यक्तिगत वृक्ष के समान spines संकेतों के मापन के आधार पर अनुमति देता है.

Abstract

Understanding the biophysical properties and functional organization of single neurons and how they process information is fundamental for understanding how the brain works. The primary function of any nerve cell is to process electrical signals, usually from multiple sources. Electrical properties of neuronal processes are extraordinarily complex, dynamic, and, in the general case, impossible to predict in the absence of detailed measurements. To obtain such a measurement one would, ideally, like to be able to monitor, at multiple sites, subthreshold events as they travel from the sites of origin on neuronal processes and summate at particular locations to influence action potential initiation. This goal has not been achieved in any neuron due to technical limitations of measurements that employ electrodes. To overcome this drawback, it is highly desirable to complement the patch-electrode approach with imaging techniques that permit extensive parallel recordings from all parts of a neuron. Here, we describe such a technique – optical recording of membrane potential transients with organic voltage-sensitive dyes (Vm-imaging) – characterized by sub-millisecond and sub-micrometer resolution. Our method is based on pioneering work on voltage-sensitive molecular probes 2. Many aspects of the initial technology have been continuously improved over several decades 3, 5, 11. Additionally, previous work documented two essential characteristics of Vm-imaging. Firstly, fluorescence signals are linearly proportional to membrane potential over the entire physiological range (-100 mV to +100 mV; 10, 14, 16). Secondly, loading neurons with the voltage-sensitive dye used here (JPW 3028) does not have detectable pharmacological effects. The recorded broadening of the spike during dye loading is completely reversible 4, 7. Additionally, experimental evidence shows that it is possible to obtain a significant number (up to hundreds) of recordings prior to any detectable phototoxic effects 4, 6, 12, 13. At present, we take advantage of the superb brightness and stability of a laser light source at near-optimal wavelength to maximize the sensitivity of the Vm-imaging technique. The current sensitivity permits multiple site optical recordings of Vm transients from all parts of a neuron, including axons and axon collaterals, terminal dendritic branches, and individual dendritic spines. The acquired information on signal interactions can be analyzed quantitatively as well as directly visualized in the form of a movie.

Protocol

1. उपकरण सेटअप 1.1 कदम. इमेजिंग सेटअप वोल्टेज संवेदनशील डाई संकेतों रिकॉर्डिंग करने के लिए महत्वपूर्ण उचित सेटअप डिजाइन है. हम तीन कैमरों के साथ सुसज्जित एक ईमानदार माइक्रोस्कोप (BX51WI ?…

Representative Results

सफल confocal माइक्रोस्कोपी जो टुकड़ा की सतह के करीब हैं और ध्यान के एक विमान में स्थित बरकरार neuronal प्रक्रियाओं की स्पष्ट पहचान की अनुमति चाहिए. तंत्रिका कोशिकाओं जो वोल्टेज के प्रति संवेदनशील डाई लोड करने क?…

Discussion

इस अनुच्छेद के उप सुक्ष्ममापी और उप millisecond spatiotemporal संकल्प के साथ व्यक्तिगत न्यूरॉन्स की विद्युत गतिविधि की निगरानी के लिए एक डाई वोल्टेज के प्रति संवेदनशील रिकॉर्डिंग विधि का वर्णन करता है. निकट इष्टतम त?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

हम हमारे Knut Holthoff, आर्थर Konnerth और मार्को Canepari जो कृपया रंजक प्रदान करने के लिए इस तकनीक का प्रारंभिक विकास में के रूप में के रूप में अच्छी तरह से भाग लिया Leslie एम. Loew सहयोगियों के लिए आभारी हैं. NSF IOS 0817969 अनुदान, NIH NS068407 और M136043 अनुदान द्वारा और Kavli येल विश्वविद्यालय में तंत्रिका विज्ञान के लिए संस्थान द्वारा समर्थित है.

Materials

Name of the component Company Catalogue number Comments (optional)
Setup components
Upright Microscope Olympus Inc. BX51WI With three camera ports
Motorized Movable Stage Siskiyou MXOPi.2
Epi-fluorescence Condenser for Olympus BX51 TILL Photonics 0000-560-11659
Upright Microscope Carl Zeiss, LLC AxioExaminer D1 With three camera ports
Motorized Top Plate Scientifica Limited MMBP
Epi-fluorescence Condenser for Zeiss AxioExaminer TILL Photonics
Data Acquisition Camera RedShirtImaging LLC NeuroCCD-SM High speed, low read noise
CCD for IR-DIC Dage-MTI IR-1000
Spinning-Disc Confocal Scanner Yokogawa CSU-10
High Spatial Resolution CCD on Confocal Scanner PCO AG PixelFly 1392×1024 pixels
DPSS CW Laser (532 Nm) CNI Optoelectronics Tech. Co., Ltd MLL-III-532 400mW Excitation light source
Multi-Mode Fiber Launcher Siskiyou SM-CFT
Light Guide TILL Photonics 0000-515-11524
Shutter Vincent Associates LS6
Vibration Isolation Table Minus k Technology MK26
Specific reagents
Di-2-ANEPEQ (JPW 1114) Life Technologies D-6923 Voltage sensitive dye
Crym-EGFP Mouse Line GENSAT (MMRRC) STOCK Tg(Crym-EGFP)GF82Gsat/Mmcd Sparsely expressing EGFP in Layer 5 cortical neurons

References

  1. Bischofberger, J., Engel, D., Li, L., Geiger, J. R., Jonas, P. Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nature Protocols. 1, 2075-2081 (2006).
  2. Cohen, L. B., Salzberg, B. M. Optical measurement of membrane potential. Ann. Rev. Neurosci. 1, 171-182 (1978).
  3. Cohen, L. B., Canepari, M., Zecevic, D. Historical overview and general methods of membrane potential imaging. Membrane Potential Imaging in the Nervous System. , (2010).
  4. Canepari, M., Djurisic, M., Zecevic, D. Dendritic signals from rat hippocampal CA1 pyramidal neurons during coincident pre- and post-synaptic activity: a combined voltage- and calcium imaging study. J. Physiol. 580, 463-484 (2007).
  5. Canepari, M., Popovic, M., Vogt, K., Holthoff, K., Konnerth, A., Salzberg, B. M., Grinvald, A., Antic, S. D., Zecevic, D., Canepari, M., Zecevic, D. Imaging submillisecond membrane potential changes from individual regions of single axons, dendrites and spines. Membrane Potential Imaging in the Nervous System. , (2010).
  6. Djurisic, M., Antic, S., Chen, W. R., Zecevic, D. Voltage imaging from dendrites of mitral cells: EPSP attenuation and spike trigger zones. J. Neurosci. 24, 6703-6714 (2004).
  7. Holthoff, K., Zecevic, D., Konnerth, A. Rapid time-course of action potentials in spines and remote dendrites of mouse visual cortical neurons. J. Physiol. 588, 1085-1096 (2010).
  8. Kole, M. H. P., Letzkus, J. J., Stuart, G. J. Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron. 55, 633-647 (2007).
  9. Kuhn, B., Fromherz, P., Denk, W. High sensitivity of Stark-shift voltage-sensing dyes by one- or two-photon excitation near the red spectral edge. Biophysical J. 87, 631-639 (2004).
  10. Loew, L. M. Design and characterization of electrochromic membrane probes. J. Biochem. Biophys. Method. 6, 243-260 (1982).
  11. Loew, L., Canepari, M., Zecevic, D. Design and use of organic voltage sensitive dyes. Membrane Potential Imaging in the Nervous System. , (2010).
  12. Palmer, L. M., Stuart, G. J. Site of action potential initiation in layer 5 pyramidal neurons. J. Neurosci. 26, 1854-1863 (2006).
  13. Popovic, M. A., Foust, A. J., McCormick, D. A., Zecevic, D. The spatio-temporal characteristics of action potential initiation in layer 5 pyramidal neurons: a voltage imaging study. J. Physiol. 589, 4167-4187 (2011).
  14. Ross, W. N., Salzberg, B. M., Cohen, L. B., Grinvald, A., Davila, H. V., Waggoner, A. S., Wang, C. H. Changes in absorption, fluorescence, dichroism, and birefringence in stained giant axons: optical measurement of membrane potential. J. Membr. Biol. 33, 141-183 (1977).
  15. Shu, Y., Duque, A., Yu, Y., Haider, B., McCormick, D. A. Properties of action potential initiation in neocortical pyramidal cells: evidence from whole cell axon recordings. J Neurophysiol. 97, 746-760 (2007).
  16. Wu, J. -. Y., Cohen, L. B., Mason, W. T. Fast multisite optical measurement of membrane potential. A practical guide to technology for quantitative real-time analysis. , 389-404 (1993).
  17. Yuste, R. . Dendritic Spines. , (2010).
check_url/4261?article_type=t

Play Video

Cite This Article
Popovic, M., Gao, X., Zecevic, D. Voltage-sensitive Dye Recording from Axons, Dendrites and Dendritic Spines of Individual Neurons in Brain Slices. J. Vis. Exp. (69), e4261, doi:10.3791/4261 (2012).

View Video