Summary

寿命测量<em>果蝇</em

Published: January 07, 2013
doi:

Summary

黑腹果蝇(Drosophila melanogaster)是一个功能强大的模式生物,探索长寿调控的分子基础。该协议将讨论生成一个以人群为基础的重现性好,测量的长寿以及潜在的缺陷和如何避免它们所涉及的步骤。

Abstract

老龄化是一个现象,就是在稳定的生理恶化,几乎所有的生物体中,它已审查的结果,减少物理性能和疾病的风险增加。个人老龄化是明显的年龄相关的死亡率增加,这往往是在实验室中测量的观测寿命在大样本的年龄相匹配的个人在群体水平上。实验,寻求量化的程度,遗传或环境的操作影响在简单的模型生物的寿命已经非常成功的理解方面的老化,延长寿命,预防与年龄有关的疾病在哺乳动物中是保守的类群和鼓舞人心的新战略。

飞醋, 黑腹果蝇(Drosophila melanogaster),是一个有吸引力老化的机制,由于其寿命相对较短,畜牧业方便,轻便遗传学研究的模式生物。然而,人口老龄化的措施,包括年龄特异性生存率和死亡率,即使是轻微的实验设计及环境的变化是非常敏感的,需要维护的持续时间老化实验,严格的实验室操作规范。这些考虑,一起实践需要仔细控制的遗传背景,用于产生强大的测量是必要的。事实上,有许多著名的推论寿命实验,酵母,蠕虫,果蝇和小鼠已追踪到环境或遗传的文物1-4的争议。在这个协议中,我们描述了一系列的程序进行了优化,经过多年的测量长寿果蝇的实验室瓶。我们还描述了使用的dLife软件,这是由本实验室开发的,并且是可用于下载( http://sitemaker.umich.edu/pletcherlab /软件)。 dLife,加速吞吐量和促进良好做法,通过整合优化的实验设计,简化飞处理和数据采集,规范数据分析。我们还将讨论很多潜在的隐患在设计,收集和解释的寿命数据,我们提供的步骤,以避免这些危险。

Protocol

我们建议存储实验食品,酵母膏,和葡萄的琼脂平皿上,出现在协议中,在4℃下,在1-2个月内,并使用它们,只要模具和干燥设置不英寸的标准环境条件下的幼虫和成虫阶段涉及维护一个12:12的人力资源光线暗的周期和60%的相对湿度在25°C的苍蝇孵化器。 1。制备实验性食品的幼虫的生长,我们使用修改后的加州理工学院,这是简称为CT在本协议中的中等5。 <…

Representative Results

在图1中,列出关键步骤的简化方案的协议。同步协议的一部分,可用于各种检测,要求年龄匹配的成年家蝇。 野生型苍蝇的在图2a中所示的典型的存活曲线,使用dLife实验管理软件( 图2b,三 )。成年男性通常居住的时间较短,与这两个群体实现对10%SY食品的寿命> 50天的均值和中位数在25°C需要注意的是生存在早期的实验的一部分仍?…

Discussion

这里提出的协议描述了一种方法,在果蝇成虫寿命产生可重复的测量,是适应评估遗传,药理,和环境干预。该协议的关键方面包括仔细控制幼虫发育环境,最大限度地减少成人的压力,并尽量减少在实验组和对照组的偏见。我们还提出了使用的dLife寿命实验管理软件。通过简单的连接条形码或RFID标签,每个小瓶中,dLife计划将有助于为每个测量数据采集和绘制存活曲线。虽然它是目前最?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是支持的资金从埃利森医学基金会(SDP, http://www.ellisonfoundation.org/index.jsp ),美国国立卫生研究院K01AG031917(NJL http://www.nih.gov/ ),美国国立卫生研究院5T32GM007315-35 (JR)和NIH R01AG030593(SDP)。这项工作利用的资源对果蝇衰老的核心弥敦道冲击卓越中心(DAC)的生物学老化的老化P30-AG-013283( http://www.nih.gov/ )由国家资助。作者想感谢的的普莱彻实验室为有益的讨论,特别是布赖恩涌的批判性阅读的手稿。我们要感谢尼克·阿谢尔和凯瑟琳Borowicz与数据采集的援助。

Materials

Name of the reagent Company Catalogue number Comments (optional)
Active Dry Yeast Fleishmann’s Yeast 2192  
Grape Agar Powder Premix Genesee Scientific 47-102  
Large Embryo Collection Cages Genesee Scientific 59-101  
Large Replacement End Caps Genesee Scientific 59-103  
6 oz Square Bottom Bottles, polypropylene Genesee Scientific 32-130  
Flugs Closures for Stock Bottles Genesee Scientific 49-100  
Drosophila Vials, Wide, Polystrene Genesee Scientific 32-117  
Flugs Closures for Wide Vials Genesee Scientific 49-101  
Wide Orifice Aardvark Pipet Tips, 200 ul Denville Scientific P1105-CP  
Flystuff Flypad, Standard Size Genesee Scientific 59-114  
BD Falcon 15 ml Conical Centrifuge Tubes Fisher Scientific 14-959-70C  
Fisherbrand Petri Dishes with Clear Lids, Raised Ridge; 100 O.D. x 15 mm H; Fisher Scientific 08-757-12  
Kimax* Colorware Flasks 1,000 ml yellow Fisher Scientific 10-200-47  
PBS pH 7.4 10x Invitrogen 70011044  
Gelidium Agar Mooragar n/a  
Brewer’s Yeast MP Biomedicals 0290331280  
Granulated Sugar Kroger n/a  
Tegosept Genesee Scientific 20-266 Fly Food Preservative
Propionic Acid, 99% Acros Organics 149300025 Fly Food Preservative
Kanamycin Sulfate ISC BioExpress 0408-10G  
Tetracycline HCl VWR 80058-724  

References

  1. Toivonen, J. M., et al. No influence of Indy on lifespan in Drosophila after correction for genetic and cytoplasmic background effects. PLoS Genet. 3, e95 (2007).
  2. Spencer, C. C., Howell, C. E., Wright, A. R., Promislow, D. E. Testing an ‘aging gene’ in long-lived drosophila strains: increased longevity depends on sex and genetic background. Aging Cell. 2, 123-130 (2003).
  3. Burnett, C., et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature. 477, 482-485 (2011).
  4. Bokov, A. F., et al. Does reduced IGF-1R signaling in Igf1r+/- mice alter aging?. PLoS One. 6, e26891 (2011).
  5. Lewis, E. B. A new standard food medium. Drosophila Information Service. 34, 117-118 (1960).
  6. Skorupa, D. A., Dervisefendic, A., Zwiener, J., Pletcher, S. D. Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. Aging Cell. 7, 478-490 (2008).
  7. Rera, M., et al. Modulation of longevity and tissue homeostasis by the Drosophila PGC-1 homolog. Cell Metab. 14, 623-634 (2011).
  8. Kaplan, E. L., Meier, P. Nonparametric Estimation from Incomplete Observations. Journal of the American Statistical Association. 53, 457-481 (1958).
  9. Pletcher, S. D. Mitigating the Tithonus Error: Genetic Analysis of Mortality Phenotypes. Sci. Aging Knowl. Environ. 2002, pe14 (2002).
  10. Pletcher, S. D., Khazaeli, A. A., Curtsinger, J. W. Why do life spans differ? Partitioning mean longevity differences in terms of age-specific mortality parameters. J. Gerontol. A Biol. Sci. Med. Sci. 55, 381-389 (2000).
  11. Promislow, , Tatar, , Pletcher, , Carey, Below-threshold mortality: implications for studies in evolution, ecology and demography. Journal of Evolutionary Biology. 12, 314-328 (1999).
  12. Pletcher, Model fitting and hypothesis testing for age-specific mortality data. Journal of Evolutionary Biology. 12, 430-439 (1999).
  13. Partridge, L., Gems, D. Benchmarks for ageing studies. Nature. 450, 165-167 (2007).
  14. Roman, G., Endo, K., Zong, L., Davis, R. L. P[Switch], a system for spatial and temporal control of gene expression in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America. 98, 12602-12607 (2001).
  15. Ford, D., et al. Alteration of Drosophila life span using conditional, tissue-specific expression of transgenes triggered by doxycyline or RU486/Mifepristone. Exp. Gerontol. 42, 483-497 (2007).
  16. Priest, N. K., Mackowiak, B., Promislow, D. E. The role of parental age effects on the evolution of aging. Evolution. 56, 927-935 (2002).
  17. Smith, E. M., et al. Feeding Drosophila a biotin-deficient diet for multiple generations increases stress resistance and lifespan and alters gene expression and histone biotinylation patterns. J. Nutr. 137, 2006-2012 (2007).
  18. Sorensen, J. G., Loeschcke, V. Larval crowding in Drosophila melanogaster induces Hsp70 expression, and leads to increased adult longevity and adult thermal stress resistance. J. Insect Physiol. 47, 1301-1307 (2001).
  19. Bass, T. M., et al. Optimization of dietary restriction protocols in Drosophila. J. Gerontol. A Biol. Sci. Med. Sci. 62, 1071-1081 (2007).
  20. Miquel, J., Lundgren, P. R., Bensch, K. G., Atlan, H. Effects of temperature on the life span, vitality and fine structure of Drosophila melanogaster. Mechanisms of Ageing and Development. 5, 347-370 (1976).
  21. Pittendrigh, C. S., Minis, D. H. Circadian systems: longevity as a function of circadian resonance in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America. 69, 1537-1539 (1972).
  22. Joshi, A., Mueller, L. D. Adult crowding effects on longevity in Drosophila melanogaster: Increase in age-dependent mortality. Current Science. 72, 255-260 (1997).
  23. Ja, W. W., et al. Prandiology of Drosophila and the CAFE assay. Proceedings of the National Academy of Sciences of the United States of America. 104, 8253-8256 (2007).
  24. Lee, K. P., et al. Lifespan and reproduction in Drosophila: New insights from nutritional geometry. Proceedings of the National Academy of Sciences of the United States of America. 105, 2498-2503 (2008).
  25. Gargano, J. W., Martin, I., Bhandari, P., Grotewiel, M. S. Rapid iterative negative geotaxis (RING): a new method for assessing age-related locomotor decline in Drosophila. Experimental gerontology. 40, 386-395 (2005).
check_url/50068?article_type=t

Play Video

Cite This Article
Linford, N. J., Bilgir, C., Ro, J., Pletcher, S. D. Measurement of Lifespan in Drosophila melanogaster. J. Vis. Exp. (71), e50068, doi:10.3791/50068 (2013).

View Video