Summary

Isolamento dei lipidi cellulari Goccioline: due tecniche di purificazione partire da cellule di lievito e placente umane

Published: April 01, 2014
doi:

Summary

Due tecniche per isolare gocce lipidiche cellulari da 1) cellule di lievito e 2) placente umane sono presentati. Il fulcro di entrambe le procedure è la densità centrifugazione in gradiente, dove lo strato risultante galleggiante contenente le goccioline può essere facilmente visualizzato occhio, estratto, e quantificato mediante analisi Western Blot per la purezza.

Abstract

Gocce lipidiche sono organelli dinamiche che si possono trovare nella maggior parte delle cellule procariote eucariotiche e certe. Strutturalmente, le goccioline costituiti da un nucleo di lipidi neutri circondato da un monostrato di fosfolipidi. Una delle tecniche più utili nella determinazione dei ruoli cellulari delle goccioline è stato individuazione proteomica di proteine ​​legate, che possono essere isolati con le goccioline. Qui, due metodi sono descritti per isolare gocce lipidiche e le loro proteine ​​legate da due ampie eucarioti: fissione lievito e cellule dei villi placentari umani. Anche se entrambe le tecniche hanno differenze, il metodo principale – Densità di centrifugazione in gradiente – è condivisa da entrambi i preparativi. Questo dimostra l'ampia applicabilità delle tecniche di isolamento droplet presentate.

Nel primo protocollo, le cellule di lievito vengono convertiti in sferoplasti mediante digestione enzimatica delle loro pareti cellulari. I sferoplasti risultanti sono poi gently lisato in un omogeneizzatore larghi. Ficoll viene aggiunto al lisato di fornire un gradiente di densità, e la miscela viene centrifugata per tre volte. Dopo la prima rotazione, le goccioline lipidiche sono localizzati al livello fluttuante colore bianco delle provette da centrifuga con il reticolo endoplasmatico (ER), la membrana plasmatica, e vacuoli. Due successivi giri sono utilizzati per rimuovere questi altri tre organelli. Il risultato è uno strato che ha solo goccioline e proteine ​​legate.

Nel secondo protocollo, le cellule dei villi placentari sono isolate da placenta umana termine per digestione enzimatica con tripsina e DNasi I. Le cellule vengono omogeneizzati in un omogeneizzatore larghi. Passaggi a bassa velocità e centrifugazione a velocità media vengono utilizzati per rimuovere le cellule continue, detriti cellulari, nuclei e mitocondri. Il saccarosio è aggiunto l'omogeneizzato per fornire un gradiente di densità e la miscela viene centrifugata per separare le goccioline lipidiche dall'altro cellulafrazioni r.

La purezza delle goccioline lipidiche in entrambi i protocolli è confermata mediante analisi Western Blot. Le frazioni di gocce di entrambe le preparazioni sono adatti per la successiva analisi proteomica e lipidomico.

Introduction

Gocce lipidiche cellulari sono organelli dinamiche che servono molteplici funzioni nelle cellule. Essi sono hub stoccaggio dei lipidi neutri, che possono essere convertiti in energia o utilizzati per la sintesi dei fosfolipidi. Le goccioline giocano un ruolo centrale in condizioni fisiologiche e patologiche tra cui l'aterosclerosi, obesità e malattie metaboliche, malattie infettive e anche 1,2. Inoltre, sono fonti interessanti per carburanti biodiesel.

Molte informazioni sui ruoli cellulari di gocce lipidiche è stato ottenuto da analisi proteomica e lipidomico di goccioline purificate da organismi di ampio respiro 3. Questi organismi hanno incluso i batteri, lieviti 4,5 6-11, piante 12,13, nematodi 14, e vola 15,16. Dato l'interesse per il ruolo di goccioline lipidiche in malattie metaboliche umane, goccioline sono anche stati isolati da cellule animali in coltura etessuti Nimal. Linee cellulari coltivate hanno incluso 3T3-L1 adipociti 17, ovaia di criceto cinese (CHO), cellule K2 18, hepatocyes umane 19,20, e linee cellulari epiteliali 21. Tessuti animali da cui sono state isolate gocce hanno incluso il mouse muscolo scheletrico 22, 23 fegato e ghiandole mammarie 23. Come accennato in precedenza, l'obiettivo della maggior parte degli studi isolamento gocciolina è effettuare analisi proteomica sui fattori legati e analisi lipidomico sul neutro e fosfolipidi.

Poiché i lipidi neutri – i più numerosi dei componenti di goccioline lipidiche – sono meno dense maggior parte degli altri materiali cellulari, isolamento di gocce è stata tradizionalmente eseguita utilizzando gradiente di densità centrifugazione. Tale tecnica è il fulcro di entrambi preparazioni presentate qui. Tecniche precedenti 6,24 sono combinate e modificate in una presentazione visiva dell'isolamento di goccioline da cellule di lievito di fissione coltivatee cellule umane noncultured ottenute dal tessuto placentare. L'obiettivo è di mostrare la vasta applicabilità di questa tecnica scegliendo due tipi di cellule molto diverse come punti per l'isolamento gocciolina di partenza. Questa tecnica dovrebbe essere utile per coloro che desiderano isolare le goccioline dalla maggior parte degli organismi.

Protocollo 1 descrive l'isolamento di goccioline lipidiche dal lievito di fissione, Schizosaccharomyces pombe, che è stato usato come modello per osservare la formazione di goccioline durante la divisione cellulare eucariotica 25. Il lievito Saccharomyces cerevisiae in erba è stato ampiamente utilizzato come organismo modello per lo studio dei lipidi droplet biologia. Protocollo 1 è applicabile a entrambi gli organismi e le differenze nei preparativi sono evidenziati.

Protocollo 2 descrive l'isolamento di goccioline lipidiche dalle cellule dei villi placentari, che sono a loro volta ottenuti da placenta umana termine. Ilraccolta di placente termine offre un'opportunità unica di ottenere in modo sicuro ed eticamente 200-250 g di facilmente reperibile tessuto umano 26, che contiene un numero significativo di goccioline lipidiche. Questo è in contrasto con la maggior parte del lavoro di isolamento lipidi gocciolina in eucarioti superiori dove le goccioline originano da cellule coltivate. In questi studi, gli acidi grassi sono spesso aggiunti alla coltura per promuovere la sintesi di lipidi neutri e quindi la crescita di goccioline. Questo è in contrasto con il lavoro qui dove goccioline lipidiche si formano in condizioni native nel tessuto placentare.

Le purezza delle frazioni lipidi goccioline sono determinati mediante analisi Western Blot usando anticorpi marcatori organelli. Questi due protocolli produrranno frazioni lipidiche goccioline che sono adatti per la successiva analisi proteomica e lipidomico.

Protocol

1. Isolare lipidi goccioline da (fissione) cellule di lievito Isolamento di goccioline dalla famosa organismo modello in erba lievito Saccharomyces cerevisiae è quasi identico al seguente protocollo 6. Le differenze tra le preparazioni sono noti. 1. Cellule di lievito in crescita Preparare il supporto. Unire 36 g di YE5S polvere per litro di dH 2 O in bottiglie di vetro o flaconi di coltura. Saranno necessari circa 2 L di m…

Representative Results

Se la centrifugazione in gradiente di densità lavorato come previsto, il livello fluttuante dovrebbe contenere goccioline lipidiche e essere impoverito di altri organelli durante la progressione delle rotazioni ad alta velocità. Per il protocollo 1, Western Blot sono stati eseguiti con anticorpi marcatori a gocce lipidiche (Erg6p), e gli organelli che sono stati trovati ad interagire con le goccioline di lipidi nel lievito, ER (Dpm1p), mitocondri (Por1p), membrana plasmatica (Pma1p), e vac…

Discussion

Passaggi critici all'interno di questo protocollo

Assicurarsi coerente con media e densità cellulari durante la crescita delle cellule in coltura. Goccioline lipidiche cellulari sono unici in quanto le loro proteine ​​associate sono altamente dipendenti l'ambiente in cui le cellule sono coltivate 17. Pertanto, il supporto in cui si coltivano le cellule e la densità delle cellule devono essere strettamente monitorati prima lisi….

Disclosures

The authors have nothing to disclose.

Acknowledgements

Questo lavoro è stato supportato dal premio American Heart Association 13SDG14500046 al PD, a Educazione Energia Sostenibile & Research Center Award (Univ. of Tennessee) al PD, e dal Physicians 'Medical Education and Research Foundation (Univ. of Tennessee) premio a JM L' autori ringraziano Caroline Leplante (Yale University.) per il protocollo per la conversione di lievito di fissione a sferoplasti; Eric T. Boder (Univ. of Tennessee) per l'utilizzo dei suoi incubatori stringono, tavolo centrifuga e apparecchiature Western Blot, e il Centro per Biotecnologie Ambientali (Univ. Tennessee) per l'uso della loro ultra-centrifuga, Günther Daum per gli anticorpi di lievito (Graz University of Technology, Austria.), il personale del Dipartimento di Ostetricia e Ginecologia (Univ. Tennessee Medical Center) per l'assistenza tecnica .

Materials

PROTOCOL #1: 
1.Growing yeast cells and converting to spheroplasts
Edinburgh Minimal Media (EMM) Sunrise Science Products 2005
Yeast extract with 5 supplements (YE5S) Sunrise Science Products 2011 YE5S media with 225 mg/ml of each supplement: adeninie, histidine, leucine, lysine, uracil. The equivalent for budding yeast would be YPD.
YPD powder Sunrise Science Products 1875 For S. cerevisiae 
Sorbitol Fisher Scientific BP439
Yeast Lytic Enzyme MP Biomedicals 215352610
Lysing Enzymes from Trichoderma harzianum Sigma-Aldrich L1412
Zymolayse-20T Sunrise Science Products N0766391 For S. cerevisiae 
BODIPY 493/503 Invitrogen D-3922
Microscope Slides Fisher Scientific 12-544-7
Microscope Cover Glass Fisher Scientific 12-542-B
Plastic transfer pipette Fisher Scientific 137115AM
1 liter glass bottle
250 ml flask
2.8 liter flasks
2. Yeast lipid droplet isolation
Tris-HCl Fisher Scientific BP153
EDTA Fisher Scientific BP120
Ficoll 400 Fisher Scientific BP525
12-14k Spectra/Por Dialysis Membrane SpectrumLabs 132680
EDTA-free Protease Inhibitor Cocktail Tablets Roche Diagnostics 11873580001 irritant
Dounce Homogenizer  Sigma-Aldrich D9938
Ultracentrifuge Tubes 25x89mm (for SW28) Beckman-Coulter 355642
12-14k Spectra/Por Dialysis Membrane SpectrumLabs 132680
Name of Equipment Company Catalog Number Comments/Description
 Temperature-controlled shaker New Brunswick Scientific C25KC
Thermo Sorvall Legend XTR centrifuge Thermo-Scientific 75004521
Swinging Bucket Centrifuge Rotor Thermo-Scientific 75003607
Fiberlite* F15-6x100y Fixed-Angle Rotor Thermo-Scientific 75003698
Ultracentrifuge LB-M Beckman-Coulter
SW28 Ultracentrifuge Rotor Beckman-Coulter 342204
PROTOCOL #2 
1. Placental villous cells isolation
Disposable underpads Fisher Scientific 23666062
Autoclavable pan (container), 3L Fisher Scientific 1336110
Fine scissors, sharp-sharp, straight Fine science tools 1406011
London Forceps Fine science tools 1108002
Dumont #7b Forceps Fine science tools 1127020
Razor blades Fisher Scientific S65921
Screen cup for CD-1 Fisher Scientific S1145
40 mesh screen  Fisher Scientific S0770
Fisherbrand cell stainers 100μm Fisher Scientific 22363549
150 mm Petri Dishes Fisher Scientific NC9054771
NaCl Fisher Scientific S642
KCl Fisher Scientific P333
KH2PO4 Fisher Scientific P386
Na2HPO4 Fisher Scientific S374
D-glucose Fisher Scientific D16
HEPES Fisher Scientific BP310
2.5% trypsin 10x Invitrogen 15090046
DNase I grade II, from bovine pancreas Roche Applied Science 10104159001
Sodium bicarbonate solution Sigma-aldrich S8761
500 ml Erlenmeyer flasks
250 ml beakers
15 ml centrifuge tubes
10 ml serological pipettes
50 ml centrifuge tubes
DMEM Invitrogen 11965084
2. Lipid droplets isolation from villous placental cells
Tris-HCl Fisher Scientific BP153
EDTA Fisher Scientific BP120
D-Sucrose Fisher Scientific BP220
Sodium Carbonate  Fisher Scientific BP357
EDTA-free protease inhibitor cocktail tablets Roche Diagnostics 11873580001 irritant
Dounce homogenizer  Sigma-Aldrich D9938
Ultracentrifuge tubes 25x89mm (for SW28) Beckman-Coulter 355642
Ultra-Clear centrifuge tubes 14x89mm (for SW41) Beckman-Coulter 344059
Disposable borosilicate glass pasteur pipets Fisher Scientific 1367820C
Name of Equipment Company Catalog Number Comments/Description
Biological safety hood  Thermo-Scientific
Waterbath Fisher Scientific
 Temperature-controlled shaker New Brunswick Scientific C25KC
Thermo Sorvall Legend XTR centrifuge Thermo-Scientific 75004521
Swinging Bucket Centrifuge Rotor Thermo-Scientific 75003607
Ultracentrifuge LB-M Beckman-Coulter
SW28 Ultracentrifuge Rotor Beckman-Coulter 342204
SW41 Ti Ultracentrifuge Rotor Beckman-Coulter 331336
Western blot
IRDye 680 Goat Anti-Rabbit IgG LI-COR 926-68071 dilution 1:15000
IRDye  800CW Goat Anti-Mouse IgG LI-COR 926-32210 dilution 1:5000
NuPAGE® Novex® 12% Bis-Tris gels Invitrogen NP0341
primary antibodies for PROTOCOL #1
Erg6p gift from Dr. G. Daum Graz University of Technology, Austria dilution 1:5000
Dpm1p Abcam ab113686 4 μg/ml
Por1p gift from Dr. G. Daum Graz University of Technology, Austria dilution 1:5000
Pma1p gift from Dr. G. Daum Graz University of Technology, Austria dilution 1:10000
Vma1p (anti-ATP6V1A) Abcam ab113745 0.5 μg/ml
primary antibodies for PROTOCOL #2
perilipin 2 (anti-ADFP) Abcam ab52355 2 μg/ml
calnexin Cell Signaling technology 2679 dilution 1:1000
GM130 Biorbyt orb40533 dilution 1:25
COX IV Cell Signaling technology 4850 dilution 1:1000
MEK1 Biorbyt orb38775 dilution 1:50

References

  1. Ploegh, H. L. A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature. 448, 435-438 (2007).
  2. Herker, E. Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1. Nat. Med. 16, 1295-1298 (2010).
  3. Ding, Y. F., et al. Isolating lipid droplets from multiple species. Nat. Protoc. 8, 43-51 (2013).
  4. Kalscheuer, R., et al. Preparative isolation of lipid inclusions from Rhodococcus opacus and Rhodococcus rubber and identification of granule-associated proteins. Arch. Microbiol. 177, 20-28 (2001).
  5. Low, K. L., et al. Lipid droplet-associated proteins are involved in the biosynthesis and hydrolysis of triacylglycerol in mycobacterium bovis bacillus calmette-guerin. J. Biol. Chem. 285, 21662-21670 (2010).
  6. Leber, R., Zinser, E., Zellnig, G., Paltauf, F., Daum, G. Characterization of lipid particles of the yeast, Saccharomyces cerevisiae. Yeast. 10, 1421-1428 (1994).
  7. Grillitsch, K., et al. Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisitied: lipidome meets proteome. Biochim. Biophys. Acta. , 1165-1176 (2011).
  8. Binns, D., et al. An intimate collaboration between peroxisomes and lipid bodies. J. Cell Biol. 173, 719-731 (2006).
  9. Ivashov, V. A., et al. Lipidome and proteome of lipid droplets from the methylotropic yeast Pichia pastoris. Biochim. Biophys. Acta. 1831, 282-290 (2013).
  10. Connerth, M., Grillitsch, K., Kofeler, H., Daum, G. Analysis of lipid particles from yeast. Lipidomics: Vol. 1: Methods and Protocols. 579, 359-374 (2009).
  11. Wolinski, H., Kohlwein, S. D. Microscopic analysis of lipid droplet metabolism and dynamics in yeast. Methods Mol. Biol. 457, 151-163 (2008).
  12. Jolivet, P., et al. Protein composition of oil bodies in Arabidopsis thaliana ecotype WS. Plant Physiol. Biochem. 42, 501-509 (2004).
  13. Katavic, V., Agrawal, G. K., Hajduch, M., Harris, S. L., Thelen, J. J. Protein and lipid composition analysis of oil bodies from two Brassica napus cultivers. Proteomics. 6, 4586-4598 (2006).
  14. Zhang, P., et al. Proteomic study and marker protein identification of Caenorhabditis elegans lipid droplets. Mol. Cell. Proteomics. 11, 317-328 (2012).
  15. Krahmer, N., Hilger, M., Kory, N., Wilfling, F., Stoehr, G., Mann, M., Farese, R. V., Walther, T. C. Protein correlation profiles identify lipid droplet proteins with high confidence. Mol. Cell Proteomics. 12, 1115-1126 (2013).
  16. Cermelli, S., Gou, Y., Gross, S. P., Welte, M. A. The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr. Biol. 16, 1783-1795 (2006).
  17. Brasaemle, D. L., Dolios, G., Shapiro, L., Wang, R. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J. Biol. Chem. 279, 46835-46842 (2004).
  18. Liu, P. S., Ying, Y. S., Zhao, Y. M., Mundy, D. I., Zhu, M. F., Anderson, R. G. W. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J. Biol. Chem. 279, 3787-3792 (2004).
  19. Fujimoto, Y., et al. Identification of major proteins in the lipid droplet-enriched fraction isolated from the human hepatocyte cell line HuH7. Biochim. Biophys. Acta. , 47-59 (2004).
  20. Sato, S., et al. Proteomic profiling of lipid droplet proteins in hepatoma cell lines expressing hepatitis C virus core protein. J. Biochem. 139, 921-930 (2006).
  21. Umlauf, E., Csaszar, E., Moertelmaier, M., Schuetz, G. J., Parton, R. G., Prohaska, R. Association of stomatin with lipid bodies. J. Biol. Chem. 279, 23699-23709 (2004).
  22. Zhang, H. N., et al. Proteome of skeletal muscle lipid droplet reveals association with mitochondria and apolipoprotein A-I. J. Proteome Res. 10, 4757-4768 (2011).
  23. Wu, C. C., Howell, K. E., Neville, M. C., Yates, J. R., McManaman, J. L. Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis. 21, 3470-3482 (2000).
  24. Brasaemle, D. L., Wolins, N. E. Isolation of lipid droplets from cells by density gradient centrifugation. Curr. Protoc. Cell Biol. , 3.15.1-3.15.12 (2005).
  25. Long, A. P., et al. Lipid droplet de novo formation and fission are linked to the cell cycle in fission yeast. Traffic. 13, 705-714 (2012).
  26. Petroff, M. G., Phillips, T. A., Ka, H., Pace, J. L., Hunt, J. S. Isolation and culture of term human trophoblast cells. Methods Mol. Med. 121, 203-217 (2006).
  27. Cho, S. Y., et al. Identification of mouse Prp19p as a lipid droplet-associated protein and its possible involvement in the biogenesis of lipid droplets. J. Biol. Chem. 282, 2456-2465 (2007).
  28. Ding, Y. B., Wu, Y. B., Zeng, R., Liao, K. Proteomic profiling of lipid droplet-associated proteins in primary adipocytes of normal and obese mouse. Biochim. Biophys. Acta. 44, 394-406 (2012).
  29. Jagerstrom, S., et al. Lipid droplets interact with mitochondria using SNAP23. Cell Biol. Int. 33, 934-940 (2009).
  30. Xu, N. Y., et al. The FATP1-DGAT2 complex facilitates lipid droplet expansion at the ER-lipid droplet interface. J. Cell Biol. 198, 895-911 (2012).
  31. Ozeki, S., Cheng, J. L., Tauchi-Sato, K., Hatano, N., Taniguchi, H., Fujimoto, T. Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J. Cell Sci. 118, 2601-2611 (2005).
  32. Yang, H. Y., Galea, A., Sytnyk, V., Crossley, M. Controlling the size of lipid droplets: lipid and protein factors. Curr. Opin. Cell Biol. 24, 509-516 (2012).
  33. Jacquier, N., Choudhary, V., Mari, M., Toulmay, A., Reggiori, F., Schneiter, R. Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J. Cell Sci. 124, 2424-2437 (2011).
  34. Pu, J., Ha, C. W., Zhang, S., Jung, J. P., Huh, W. K., Liu, P. Interactomic study on interaction between lipid droplets and mitochondria. Protein Cell. 2, 487-496 (2011).
  35. Shaw, C. S., Jones, D. A., Wagemakers, A. J. M. Network distribution of mitochondria and lipid droplets in human muscle fibres. Histochem. Cell Biol. 129, 65-72 (2008).
  36. Goodman, J. M. The gregarious lipid droplet. J. Biol. Chem. 283, 28005-28009 (2008).
  37. Brasaemle, D. L., Wolins, N. E. Packaging of fat: an evolving model of lipid droplet assembly and expansion. J. Biol. Chem. 287, 2273-2279 (2012).
check_url/50981?article_type=t

Play Video

Cite This Article
Mannik, J., Meyers, A., Dalhaimer, P. Isolation of Cellular Lipid Droplets: Two Purification Techniques Starting from Yeast Cells and Human Placentas. J. Vis. Exp. (86), e50981, doi:10.3791/50981 (2014).

View Video