Summary

时空步态参数的患者和老年人的临床评估

Published: November 07, 2014
doi:

Summary

This protocol is used to evaluate spatial and temporal gait variables of neurological/orthopedic patients and older persons by means of a recently-introduced floor-based photocell system.

Abstract

人行走的空间和时间特征经常评估,以确定可能的步态障碍,主要表现在骨科和神经患者1-4,而且在健康的老年人5,6。在这个协议中所描述的定量步态分析是用一个最近推出的光电系统进行的(见材料表),它有潜力在临床中使用,因为它是可移植的,易于设置(无主题制备一测试之前需要),并且不需要维护和传感器校准。光电系统由一系列高密度地板基光电细胞与光发射和光接收二极管放置相互平行的,以建立一个走廊,并且被定向垂直于级数7的线。该系统简单地检测到中断中的光信号,例如,由于脚的记录区域内的存在。颞步态参数和的连续步骤1D空间坐标随后被计算出,以提供公共的步态参数,如步长,单肢支撑和步行速度如图8所示 ,其有效对抗一个标准仪器最近证明7,9。测量过程是非常简单的;单个患者可以在不到5分钟,进行测试和全面的报告可以在不到1分钟内生成的。

Introduction

步行是日常生活中最重要的体育活动之一,是生活质量的老人和病人群体谁可与步态恶化目前的主要决定因素。步态功能的临床评价,因此重要的是要揭示引起的老化和/或神经/整形外科病理改变的潜力,同时也证明治疗的功能性利益。不同的仪器已经开发了用于的步态参数, 例如力板,基于视频的三维运动分析,体搭载的加速度计10,11的定量评价,以及仪表走道垫或跑步机12。然而,这些系统主要用于研究工作,而不是用于临床目的,因为它们是操作复杂,具有低的可访问性,和脆弱的传感器。

一种地板基光电系统最近已经推出,这是能够提供一个有效的CALculation的时空特征和行走步数的一维空间坐标。该测量仪具有若干优点相比,预先存在的系统:它是易于处理,数据收集速度非常快,这是简单的创建详细的报告,它是一个模块化的系统,这意味着该系统的长度是可以改变的。因此,可以有把握地用于测量组内变化,纵向评估和在横截面的比较组间差异。所描述的协议的目标是把重点放在设备及其安装,并客观,直接地描述了评估程序,评估在老年人和病人群体的时空步态参数。

Protocol

该协议遵循当地人力伦理委员会在苏黎世(苏黎世KEK)的指导方针。 1.硬件安装(图1) 使用的地板系杆2 10-m的集合,并将它们彼此平行(与疾病进展的线),以创建一个走廊具有大约1μm的间设定的距离。 注意:此距离可以增加高达8微米。每栏有1米的长度,并且由96光二极管。 使透光性(T)和光接收(R)为单位的条形的安装之间的区别通过将透光的右?…

Representative Results

最近的一项研究证明了光电系统的有效性针对一个标准仪器(经过验证的电子走道),用于在整形外科患者和健康老年对照7时空步态参数的评估。由两个系统分别检测在步态变量的相同的组间差异。虽然同时效度非常好,与组内相关系数0.933和0.999(P <0.001)之间不等,有系统偏差(P <0.001)的两个测量仪器之间观察到。站立时间和周期时间是显著延长而摆动的时间和步长是短的光电?…

Discussion

这里介绍的协议可以被用于评估与最近推出的光电系统的病人的空间和时间的步态参数(骨科,神经,心肺等)和健康的老年人。的总长度和宽度的系统,可根据可用的空间和预算进行调制。 (在欧洲)的估计费用为每米大约2800美元的10米长的系统,最小推荐长度为3计地板为基础的步态分析。光电系统的一个新的特点也被最近推出的,它由在闭合的走廊与位于垂直于T和R棒,从而产生一种网格允…

Disclosures

The authors have nothing to disclose.

Materials

Name of Equipment Company Catalog Number Comments/Description
-Optogait system (10 meters) Microgate, Bolzano, Italy www.optogait.com
-Optogait software www.optogait.com/Support/Downloads
-Laptop
The Optogait system contains the following equipment:
-10 light-transmitting (T) bars (1 as a first meter)
-10 light-receiving (R) bars (1 as a first meter)
-18 caps to connect the bars within a set (9 for T and 9 for R bars) and 2 special caps for the last T and R bar
-1 camera with its tripod
-1 cable for connecting the Optogait to the laptop
-1 cable for connecting the camera to the laptop
-2 power supplies (one for each set of bars)

References

  1. Chow, J. W., Yablon, S. A., Horn, T. S., Stokic, D. S. Temporospatial characteristics of gait in patients with lower limb muscle hypertonia after traumatic brain injury. Brain. Inj. 24, 1575-1584 (2010).
  2. Esser, P., Dawes, H., Collett, J., Feltham, M. G., Howells, K. Assessment of spatio-temporal gait parameters using inertial measurement units in neurological populations. Gait Posture. 34, 558-560 (2011).
  3. Maffiuletti, N. A., et al. Spatiotemporal parameters of gait after total hip replacement: anterior versus posterior approach. Orthop. Clin. North Am. 40, 407-415 (2009).
  4. Webster, K. E., Wittwer, J. E., Feller, J. A. Quantitative gait analysis after medial unicompartmental knee arthroplasty for osteoarthritis. J. Arthroplasty. 18, 751-759 (2003).
  5. Chui, K. K., Lusardi, M. M. Spatial and temporal parameters of self-selected and fast walking speeds in healthy community-living adults aged 72-98 years. J. Geriatr. Phys. Ther. 33, 173-183 (2010).
  6. Hollman, J. H., McDade, E. M., Petersen, R. C. Normative spatiotemporal gait parameters in older adults. Gait Posture. 34, 111-118 (2011).
  7. Lienhard, K., Schneider, D., Maffiuletti, N. A. Validity of the Optogait photoelectric system for the assessment of spatiotemporal gait parameters. Med. Eng. Phys. 35, 500-504 (2013).
  8. Perry, J. Gait analysis, normal and pathological function. First edn, Slack Inc. , (1992).
  9. Lee, M. M., Song, C. H., Lee, K. J., Jung, S. W., Shin, D. C., Shin, S. H. Concurrent validity and test-retest reliability of the OPTOGait photoelectric cell system for the assessment of spatio-temporal parameters of the gait of young adults. J. Phys. Ther. Sci. 26, 81-85 (2014).
  10. Item-Glatthorn, J. F., Casartelli, N. C., Petrich-Munzinger, J., Munzinger, U. K., Maffiuletti, N. A. Validity of the intelligent device for energy expenditure and activity accelerometry system for quantitative gait analysis in patients with hip osteoarthritis. Arch. Phys. Med. Rehabil. 93, 2090-2093 (2012).
  11. Maffiuletti, N. A., et al. Concurrent validity and intrasession reliability of the IDEEA accelerometry system for the quantification of spatiotemporal gait parameters. Gait Posture. 27, 160-163 (2008).
  12. Reed, L. F., Urry, S. R., Wearing, S. C. Reliability of spatiotemporal and kinetic gait parameters determined by a new instrumented treadmill system. BMC Musculoskelet. Disord. 14, 249 (2013).
  13. Kressig, R. W., Beauchet, O. Guidelines for clinical applications of spatio-temporal gait analysis in older adults. Aging Clin. Exp. Res. 18, 174-176 (2006).
  14. Dubost, V., et al. Relationships between dual-task related changes in stride velocity and stride time variability in healthy older adults. Hum. Mov. Sci. 25, 372-382 (2006).
  15. Hausdorff, J. M. Gait variability: methods, modeling and meaning. J. Neuroeng. Rehabil. 2, (2005).
  16. Blin, O., Ferrandez, A. M., Serratrice, G. Quantitative analysis of gait in Parkinson patients: increased variability of stride length. J. Neurol. Sci. 98, 91-97 (1990).
  17. Webster, K. E., Merory, J. R., Wittwer, J. E. Gait variability in community dwelling adults with Alzheimer disease. Alzheimer. Dis. Assoc. Disord. 20, 37-40 (2006).
  18. Bejek, Z., Paroczai, R., Illyes, A., Kiss, R. M. The influence of walking speed on gait parameters in healthy people and in patients with osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 14, 612-622 (2006).
check_url/51878?article_type=t

Play Video

Cite This Article
Item-Glatthorn, J. F., Maffiuletti, N. A. Clinical Assessment of Spatiotemporal Gait Parameters in Patients and Older Adults. J. Vis. Exp. (93), e51878, doi:10.3791/51878 (2014).

View Video