Summary

在体外合成在人体细胞修饰蛋白表达的mRNA的感应

Published: November 13, 2014
doi:

Summary

在这个视频文章中,我们描述了诱导细胞蛋白表达的体外合成修饰的mRNA。

Abstract

外源递送的期望的细胞编码合成的信使RNA(mRNA),用于诱导蛋白质合成的具有在再生医学,基础细胞生物学,治疗疾病,和细胞的重编程领域的巨大潜力。在这里,我们描述了一步步的协议,用于生成修改的表达与诱导蛋白表达的减少的免疫激活潜力和增加的稳定性,产生的mRNA的质量控制,细胞的转染mRNA和验证通过流式细胞术。达用的eGFP基因的单一转染后3天,在转染的HEK293细胞中产生绿色荧光蛋白。在这个视频文章中,绿色荧光蛋白的mRNA的合成被描述为一个例子。但是,该过程可以适用于生产其它所需的基因。采用改良的mRNA的合成,细胞可被诱导以瞬时表达所需的蛋白,它们通常不会表达。

Introduction

在细胞中,转录出信使RNA(mRNA)的与mRNA的下面翻译成所需蛋白质确保细胞的正常功能。遗传性或获得性遗传性疾病可导致合成蛋白质的不足,功能失调而引起严重的疾病。因此,一种新的治疗方法来诱导产生缺失或有缺陷的蛋白质是外源递送合成的修饰基因导入细胞,对于所期望的蛋白质编码。因此,细胞触发合成功能蛋白,它们通常不能生产或自然不会需要。使用这种方法,遗传性疾病可以通过引入基因的被纠正,对于有缺陷或缺失的蛋白1码。 mRNA的治疗也可以用于疫苗接种到synthetize蛋白质抗原,其是由肿瘤细胞或病原体表达的。从而,宿主的免疫系统可被激活,有效地消除肿瘤细胞或防止INFEctions 2,3。此外,近年来,基因被成功地用于产生诱导的多能干细胞(iPS细胞)。为了这个目的,成纤维细胞,转染的mRNA诱导重编程的表达因子4-6,并将其与在再生医学中的巨大潜力转化中的iPSC。

先前,使用常规的mRNA的低稳定性和强免疫原性有关。因此,常规的mRNA的临床应用受到限制。然而,胞苷和尿苷的取代5-甲基胞苷和假尿嘧啶mRNA分子通过Kariko和同事内呈现的mRNA分子稳定的生物流体中,并极大地降低了免疫激活7-10,它现在允许修饰mRNA的临床适用性。

使用合成产生的改性的mRNA,所需基因转录物可以暂时在体内 11交付或体外诱导蛋白表达。所引入的基因是由蜂窝翻译机制在生理条件下转化。由于缺乏整合到宿主细胞基因组相比,病毒的基因治疗载体,肿瘤发生的风险,防止12,13。因此,使用改性合成基因疗法将会得到更好的临床认可的未来。

在这里,我们描述了用于生产改性的mRNA( 图1),转染细胞的mRNA和蛋白表达的转染细胞中的评价的详细协议。

Protocol

1.增强质粒含有所需的编码DNA序列(CDS) 预暖的SOC培养基,其中包括在转化试剂盒,室温并含有100μg/ ml氨苄青霉素至37℃的LB琼脂平板上。平衡的水浴中以42℃。 解冻的化学组分E的一个小瓶大肠杆菌在冰上。 添加1-5微升质粒(第10至100毫微克)含有CDS成化学成分E.小瓶大肠杆菌 ,轻轻混匀。不要吹打混合细胞。加入质粒后,通过敲击管轻轻拌匀。 <…

Representative Results

使用含有的eGFP的CDS的一个的pCDNA 3.3质粒的修饰的eGFP基因的合成成立( 图1)。通过PCR扩增插入物和聚T形拖尾之后,以大约1100碱基对长度的清晰条带被检测到( 图2)。增加了IVT时间增加的mRNA( 图3)的产量。 IVT之后,一个清晰的mRNA条带大约1100碱基对的长度被检测,对应于绿色荧光蛋白的mRNA的要生产的长度( 图4)。 所产?…

Discussion

mRNA的疗法在再生医学,治疗的疾病和免疫接种领域的巨大潜力。在这段视频中,我们展示了生产稳定,修饰诱导的细胞蛋白表达的mRNA。使用该协议,其他期望的mRNA可被生成。 在体外合成修饰mRNA的允许细胞的转染具有所需的mRNA诱导靶蛋白的表达。由此,所需的蛋白瞬时表达的生理条件下,直到外源递送的mRNA被完全降解。

在此视频中,绿色荧光蛋白的表达,证实了3?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

该项目是在巴登 – 符腾堡州,德国资助的欧洲社会基金。

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
Cell culture
DMEM, high glucose PAA E15-009
FBS Life Technologies 10500
Penicillin/Streptomycin  PAA P11-010 100x
L-glutamine  PAA M11-004 200 mM
DPBS without calcium and magnesium  PAA E15-002
0.04% Trypsin / 0.03% EDTA  Promocell C-41020
TNS Promocell C-41120 Trypsin Neutralizing Solution, 0.05% trypsin inhibitor in 0.1% BSA
HEK-293 cells ATCC CRL-1573
Consumables
Tissue culture plates, 12-well  Corning 3512
Cell culture flask (75 cm2 Corning 430641
DNase-and RNase-free 1.5 ml sterile microcentrifuge tubes  Eppendorf 0030 121.589 Safe-Lock, Biopur
15 ml conical tubes  greiner bio-one 188271
PCR clean and sterile epT.I.P.S. dualfilter pipette tips  Eppendorf 10 µl: 022491202,    100 µl: 022491237, 1000 µl: 022491253
Cryovial greiner bio-one 122279-128 Cryo.s 
14 ml polypropylene round bottom tube for bacterial culture  BD Falcon 352059
Plasmid amplification and purification
pcDNA 3.3_eGFP Plasmid  Addgene 26822
One Shot Top10 chemically component Escherichia coli  Invitrogen C4040-10
Sterile water (Ampuwa) Fresenius Kabi 1636071
LB medium (Luria/Miller)  Carl Roth X968.1 Dissolve 25 g l-1 in sterile water.
LB agar (Luria/Miller)  Carl Roth X969.1 Dissolve 40 g l-1 in sterile water.
Ampicillin Ready Made Solution Sigma Aldrich A5354 100 mg/ml 
Glycerol Sigma Aldrich G2025
QIAprep Spin Miniprep Kit  Qiagen 27104
mRNA production
HotStar HiFidelity Polymerase Kit  Qiagen 202602
QIAquick PCR Purification Kit  Qiagen 28106
MEGAscript T7 Kit  Life Technologies AM1334
5-Methylcytidine-5´-triphosphate  Trilink N1014 5-Methyl-CTP
Pseudouridine-5´-triphosphate  Trilink N1019 Pseudo-UTP
3´-O-Me-m7G(5´)ppp(5`)G RNA cap structure analog  New England Biolabs S1411L
RiboLock RNase Inhibitor Thermo Scientific EO0381 40 U/µl 
TURBO DNase Life Technologies AM1334 2 U/µl (from MEGAscript T7 Kit)
Antarctic phosphatase  New England Biolabs MO289S
RNeasy mini kit  Qiagen 74104
RNaseZap solution  Life Technologies AM9780
Transfection
Lipofectamine 2000 Transfection Reagent  Invitrogen 11668-019 Cationic lipid transfection reagent
Opti-MEM I Reduced Serum Media  Invitrogen 11058-021 Improved Minimal Essential Medium (MEM) with  reduced Fetal Bovine Serum (FBS) supplementation 
Gel electrophoresis
Agarose Sigma-Aldrich A9539
Gelred Nucleic Acid Gel Stain Biotium 41003 10,000x in water 
peqGOLD Range Mix DNA-Ladder  Peqlab 25-2210
0.5-10 kb RNA Ladder  Invitrogen 15623-200
1x TBE buffer
Flow cytometry analyses
CellFIX (1x) BD Biosciences 340181 10x concentrate 
Primer for insert amplification and         poly (T) tail PCR
Forward Primer (HPLC-grade) 10 µM Ella Biotech 5´-TTGGACCCTCGTACAGAAGCTAATACG-3´
Reverse Primer (HPLC-grade) 10 µM Ella Biotech 5´- T120-CTTCCTACTCAGGCTTTATTCAAAGACCA-3´
Equipment
Cell incubator Binder CO2 (5%) and O2 (20%) 
CASY cell counter  Schärfe System
Sterile workbench  BDK Luft-und Reinraumtecknik GmbH
Bacterial incubator  Incutec
Water bath
ScanDrop spectrophotometer  Analytic Jena
PCR thermocycler  Eppendorf
Microcentrifuge Eppendorf
Vortex peqlab
Thermomixer Eppendorf
Gel apparatus for electrophoresis  Bio-Rad
Gel documentation system  Bio-Rad
FACScan System  BD Biosciences
Fluorescence microscope  Nikon
Phase-contrast microscope  Zeiss

References

  1. Bangel-Ruland, N., et al. CFTR-mRNA delivery: a novel alternative for cystic fibrosis "gene therapy". The journal of gene medicine. , (2013).
  2. Benteyn, D., et al. Design of an Optimized Wilms" Tumor 1 (WT1) mRNA Construct for Enhanced WT1 Expression and Improved Immunogenicity In Vitro and In Vivo. Molecular therapy Nucleic acids. 2, 134 (2013).
  3. Petsch, B., et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nature. 30, 1210-1216 (2012).
  4. Mandal, P. K., Rossi, D. J. Reprogramming human fibroblasts to pluripotency using modified mRNA. Nature protocols. 8, 568-582 (2013).
  5. Warren, L., et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell stem cell. 7, 618-630 (2010).
  6. Yakubov, E., Rechavi, G., Rozenblatt, S., Givol, D. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors. Biochemical and biophysical research communications. 394, 189-193 (2010).
  7. Anderson, B. R., et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic acids research. 38, 5884-5892 (2010).
  8. Kariko, K., Buckstein, M., Ni, H., Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 23, 165-175 (2005).
  9. Kariko, K., et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Molecular therapy : the journal of the American Society of Gene Therapy. 16, 1833-1840 (2008).
  10. Kariko, K., Weissman, D. Naturally occurring nucleoside modifications suppress the immunostimulatory activity of RNA: implication for therapeutic RNA development. Current opinion in drug discovery & development. 10, 523-532 (2007).
  11. Kormann, M. S., et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nature biotechnology. 29, 154-157 (2011).
  12. Hacein-Bey-Abina, S., et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. The Journal of clinical investigation. 118, 3132-3142 (2008).
  13. Hacein-Bey-Abina, S., et al. Efficacy of gene therapy for X-linked severe combined immunodeficiency. The New England journal of medicine. 363, 355-364 (2010).
  14. Avci-Adali, M., et al. Optimized conditions for successful transfection of human endothelial cells with in vitro synthesized and modified mRNA for induction of protein expression. Journal of biological engineering. 8, 8 (2014).
check_url/51943?article_type=t

Play Video

Cite This Article
Avci-Adali, M., Behring, A., Steinle, H., Keller, T., Krajeweski, S., Schlensak, C., Wendel, H. P. In Vitro Synthesis of Modified mRNA for Induction of Protein Expression in Human Cells. J. Vis. Exp. (93), e51943, doi:10.3791/51943 (2014).

View Video