Summary

对于检查纤维蛋白凝块结构在正常和疾病状态的实验和成像技术

Published: April 01, 2015
doi:

Summary

In this manuscript, experimental techniques, including blood preparation, confocal microscopy, and lysis rate analysis, to examine the morphological differences between normal and abnormal clot structures due to diseased states are presented.

Abstract

Fibrin is an extracellular matrix protein that is responsible for maintaining the structural integrity of blood clots. Much research has been done on fibrin in the past years to include the investigation of synthesis, structure-function, and lysis of clots. However, there is still much unknown about the morphological and structural features of clots that ensue from patients with disease. In this research study, experimental techniques are presented that allow for the examination of morphological differences of abnormal clot structures due to diseased states such as diabetes and sickle cell anemia. Our study focuses on the preparation and evaluation of fibrin clots in order to assess morphological differences using various experimental assays and confocal microscopy. In addition, a method is also described that allows for continuous, real-time calculation of lysis rates in fibrin clots. The techniques described herein are important for researchers and clinicians seeking to elucidate comorbid thrombotic pathologies such as myocardial infarctions, ischemic heart disease, and strokes in patients with diabetes or sickle cell disease.

Introduction

伤到血管的内皮细胞衬里穿过止血反应,或血液凝块的形成修复。当血液渗透到细胞外基质,组织因子激活在血流中血小板,以促进凝血级联的引发。这个愈合过程中的关键机械部件是纤维蛋白基质中,血纤维蛋白纤维是高弹性的组成,并可以承受较大的力1-4。许多研究人员广泛,在过去几十年的研究5-13形成结构纤维蛋白和功能。

患者的疾病,如糖 ​​尿病和镰状细胞具有显影血栓性并发症,如心肌梗塞,缺血性心脏疾病的危险性增加,和笔画14-19。超过200万人新近每年在美国诊断为糖尿病。有两种类型的糖尿病:I型,其中身体不能产生胰岛素,和II型,其中身体变得耐胰岛素的足量的。糖尿病患者中,心血管疾病(CVD)是原因的80%与疾病20,21相关的发病率和死亡率的。

镰状细胞病(SCD)是一种遗传性血液疾病,影响超过10万人在美国22。 SCD是一个点突变的疾病,导致红血细胞成为月牙形,使其难以使细胞通过血液脉管系统23。这两种疾病状态增加显影在体内动脉粥样硬化病症的几率。其中的一个原因为,这是改变的血纤维蛋白的结构和功能在疾病状态14,24-26的结果。

在糖尿病和镰状细胞病,有高凝和诱导动脉粥样硬化和心血管疾病的低纤溶活性(℃VD)相比,患者的健康17,27,28。已知的是低纤溶促进动脉粥样硬化的进展和滋生患者过早冠状动脉疾病29复发缺血事件。在当前的手稿,我们研究在这个特定设置中的血纤维蛋白的​​物理性质的作用。纤维蛋白凝块的结构在非患病患者是由细纤维,毛孔变大,并且通常较少稠密14,24的。在健康患者增加的孔隙率和密度较小的纤维蛋白凝块已发现,以促进纤维蛋白溶解16。在hyperthrombotic条件如糖尿病和镰状细胞病,有一个增加纤维蛋白原的生产,导致纤维蛋白原浓度从2.5毫克/毫升的正常水平在健康患者30-33增加。形成在糖尿病患者的血纤维蛋白凝块已被发现是不太多孔的,更硬,有更多的分支点,并且较密时相比健康的,非直径betic患者14,24,33-35。改变的血纤维蛋白结构是发生在涉及凝块形成的蛋白质糖基化机制的结果。当葡萄糖分子结合,以赖氨酸残基上的纤维蛋白原分子,其抑制从适当交联的谷氨酰胺和赖氨酸残基33,36,37人类XIIIa因子(FXIIIA)发生非酶(不可逆的)糖基化。

血纤维蛋白网的结构分析已被广泛研究最近。特别是,研究人员利用电子显微镜和三维重建纤维网38,这两个调查血管(内皮细胞)细胞和血管外(成纤维细胞和平滑肌细胞)如何影响纤维蛋白结构39,利用粘弹性和频谱分析来分析纤维结构40,和使用纤维蛋白的结构和机械性能之间发达的相关性的实验和计算方法41 </sup>。目前研究的重点是制定血块结构模拟糖尿病和镰状细胞血栓形成的条件下,并利用共聚焦显微镜检查的结构的疾病状态的凝块和功能。纤维蛋白凝块从人血纤维蛋白原,人凝血酶,和FXIIIA形成。凝块用纤维蛋白溶酶裂解。为了模拟糖尿病病症,纤维蛋白原的浓度增加温育在葡萄糖溶液中以诱导体外纤维蛋白原糖化。为了模拟镰状细胞病凝血条件,增加纤维蛋白原浓度与从患者收集以前我们组做42镰状细胞比容。这些方法被用来研究的结构和病变的条件下参与纤维蛋白凝块形成和纤维蛋白溶解功能,以及诱导CVD法的机制。基于关于这些疾病的最新信息,糖化血纤维蛋白凝块的结构是致密的具有较少一第二毛孔变小。纤维蛋白凝块与红血细胞从镰状细胞的患者(红细胞)也更致密并显示在红细胞的聚集和凝聚的纤维蛋白簇。这是一个公认的现象,即先前已43确定。也有人推测,纤维蛋白溶解率会在糖化血纤蛋白凝块有和没有减少纤溶酶相比健康,正常的血纤维蛋白显著降低。结果表明,对于糖化血纤维蛋白凝块,显著不同的裂解率的结果,观察只减少纤溶酶浓度的条件下进行。使用共焦显微镜的这种实验技术提供显著优于其它成像方法,因为细胞和蛋白质保持在它们的天然状态,这使的凝血活性的实时视频捕捉。合成诱导凝血的这种方法也更便宜,更有效的时间比获得患者样品并过滤掉个别蛋白质和酶。此外,通过使用分离的蛋白质和酶的合成凝块,该凝块被标准化,以便有没有样品之间的变异如在血浆中的其它蛋白质的结果。

Protocol

注:以下协议遵循由机构审查委员会(IRB)在佐治亚理工学院设置指引。 1.采血车和红血细胞分离过程收集40-120毫升血液捐赠者在10毫升肝素真空采血管。 4小时内收集的开始PBMC(外周血单核细胞)分离。在这段时间内,保持血液在RT。 注:O / N储存血RT还是在4℃下不建议,因为这将导致较低的PBMC产量。 在冰冷的(4℃)无菌PBS 1:稀释全血1。 …

Representative Results

糖化纤维蛋白凝块结构共聚焦显微镜分析的正常和糖化凝块的共焦显微镜图像示于图3中 。在正常和糖化凝块的共聚焦显微镜分析表明,糖化血块与较小孔隙比正常凝块都具有和不具有凝块聚合过程中加入FXIIIA的致密。在图3A和3B中 ,存在其中在一个不太致密的结构比糖化凝块具有较高的血纤维蛋白浓度( 图3C和3D)</str…

Discussion

以获得有关的疾病状态的凝血机制结构有意义的数据,以隔离参与凝血,以确定在这些条件下,蛋白质和细胞的效应的因素是很重要的。这个协议是用于在体外研究了血纤维蛋白凝块的结构在糖尿病和SCD状态的目的而开发的。

有必要了解涉及纤维蛋白形成和纤维蛋白溶解中的疾病状态,因为改变的条件下会引起高凝,动脉粥样硬化,和CVD的机制。从本实验所得到的共?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to thank the Lam Lab at Georgia Tech for many helpful discussions in developing the experimental assays. Research reported in this publication was supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health under Award Number K01HL115486 and by New Innovator Grant 1DP2OD007433-01 from the Office of the Director, National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
PBS Life Technologies 10010031
Ficoll-Paque (hydrophilic polysaccharide) GE Healthcare 45-001-749
10 ml heparinized vacutainer tubes BD Biosciences 366643
Human Fibrinogen Enzyme Research Laboratories N/A
Alexa Fluor 488 human fibrinogen conjugate Molecular Probes F13191
0.5 mL graduated microcentrifuge tube Fisher Scientific 05-408-120
Glucose powder Life Technologies 15023-02
FXIIIa Enzyme Research Laboratories N/A
VIS Confocal Microscope Zeiss LSM 510 LSM 510
50 mM Tris Lonza S50-642
Calcium Chloride (CaCl2) Sigma Aldrich 449709-10G
Vybrant DiD cell-labeling solution Life Technologies L7781
Plasmin Enzyme Research Laboratories N/A
Sodium Chloride (5 M NaCl) Life Technologies AM9759
Statistical Modeling Software IBM SPSS Statistics 22

References

  1. Averett, R. D., et al. A Modular Fibrinogen Model that Captures the Stress-Strain Behavior of Fibers. Biophysical Journal. 103, 1537-1544 (2012).
  2. Carlisle, C. R., et al. The mechanical properties of individual, electrospun fibrinogen fibers. Biomaterials. 30, 1205-1213 (2009).
  3. Falvo, M. R., Gorkun, O. V., Lord, S. T. The molecular origins of the mechanical properties of fibrin. Biophysical Chemistry. 152, 15-20 (2010).
  4. Guthold, M., Cho, S. S. Fibrinogen Unfolding Mechanisms Are Not Too Much of a Stretch. Structure. 19, 1536-1538 (2011).
  5. Gerth, C., Roberts, W. W., Ferry, J. D. Rheology of fibrin clots II: Linear viscoelastic behavior in shear creep. Biophysical Chemistry. 2 (74), 208-217 (1974).
  6. Nelb, G. W., Kamykowski, G. W., Ferry, J. D. Rheology of fibrin clots. v. shear modulus, creep, and creep recovery of fine unligated clots. Biophysical Chemistry. 13 (81), 15-23 (1981).
  7. Roberts, W. W., Kramer, O., Rosser, R. W., Nestler, F. H. M., Ferry, J. D. Rheology of fibrin clots. I.: Dynamic viscoelastic properties and fluid permeation. Biophysical Chemistry. 1, 152-160 (1974).
  8. Ryan, E. A., Mockros, L. F., Weisel, J. W., Lorand, L. Structural Origins of Fibrin Clot Rheology. Biophysical Journal. 77, 2813-2826 (1999).
  9. Weisel, J. W. Fibrin assembly. Lateral aggregation and the role of the two pairs of fibrinopeptides. Biophysical Journal. 50, 1079-1093 (1986).
  10. Weisel, J. W. The mechanical properties of fibrin for basic scientists and clinicians. Biophysical Chemistry. 112, 267-276 (2004).
  11. Wolberg, A. S. Thrombin generation and fibrin clot structure. Blood Reviews. 21, 131-142 (2007).
  12. Wolberg, A. S., Campbell, R. A. Thrombin generation, fibrin clot formation and hemostasis. Transfusion and Apheresis Science. 38, 15-23 (2008).
  13. Yeromonahos, C., Polack, B., Caton, F. Nanostructure of the Fibrin Clot. Biophysical Journal. 99, 2018-2027 (2010).
  14. Dunn, E. J. Fibrinogen and fibrin clot structure in diabetes. Herz. 29, 470-479 (2004).
  15. Gladwin, M. T., Sachdev, V. Cardiovascular abnormalities in sickle cell disease. Journal of the American College of Cardiology. 59, 1123-1133 (2012).
  16. Collet, J. P., et al. Altered Fibrin Architecture Is Associated With Hypofibrinolysis and Premature Coronary Atherothrombosis. Arteriosclerosis, thrombosis, and vascular biology. 26, 2567-2573 (2006).
  17. Carr, M. E. Diabetes mellitus: a hypercoagulable state. Journal of Diabetes and its Complications. 15, 44-54 (2001).
  18. Ajjan, R. A., Ariëns, R. A. S. Cardiovascular disease and heritability of the prothrombotic state. Blood Reviews. 23, 67-78 (2009).
  19. Standeven, K. F., Ariëns, R. A. S., Grant, P. J. The molecular physiology and pathology of fibrin structure/function. Blood Reviews. 19, 275-288 (2005).
  20. Alzahrani, S., Ajjan, R. Review article: Coagulation and fibrinolysis in diabetes. Diabetes and Vascular Disease Research. 7, 260-273 (2010).
  21. Stuart, M. J., Nagel, R. L. Sickle-cell disease. The Lancet. 364, 1343-1360 (2004).
  22. Dunn, E. J., Ariëns, R. A. S., Grant, P. J. The influence of type 2 diabetes on fibrin structure and function. Diabetologia. 48, 1198-1206 (2005).
  23. Dunn, E. J., Philippou, H., Ariëns, R. A. S., Grant, P. J. Molecular mechanisms involved in the resistance of fibrin to clot lysis by plasmin in subjects with type 2 diabetes mellitus. Diabetologia. 49, 1071-1080 (2006).
  24. Famodu, A., Reid, H. Plasma fibrinogen levels in sickle cell disease. Tropical and geographical medicine. 39, 36-38 (1987).
  25. Richardson, S., Matthews, K., Stuart, J., Geddes, A., Wilcox, R. Serial Changes in Coagulation and Viscosity during Sickle-Cell Crisis. British journal of haematology. 41, 95-103 (1979).
  26. Ataga, K. I., Orringer, E. P. Hypercoagulability in sickle cell disease: a curious paradox. The American Journal of Medicine. 115, 721-728 (2003).
  27. Collet, J. P., et al. Altered fibrin architecture is associated with hypofibrinolysis and premature coronary atherothrombosis. Arteriosclerosis, thrombosis, and vascular biology. 26, 2567-2573 (2006).
  28. Barazzoni, R., et al. Increased Fibrinogen Production in Type 2 Diabetic Patients without Detectable Vascular Complications: Correlation with Plasma Glucagon Concentrations. The Journal of Clinical Endocrinology & Metabolism. 85, 3121-3125 (2000).
  29. Ceriello, A. Coagulation activation in diabetes mellitus: the role of hyperglycaemia and therapeutic prospects. Diabetologia. 36, 1119-1125 (1993).
  30. Mayne, E. E., Bridges, J. M., Weaver, J. A. Platelet adhesiveness, plasma fibrinogen and factor VIII levels in diabetes mellitus. Diabetologia. 6, 436-440 (1970).
  31. Weisel, J. W. Fibrinogen and fibrin. Advances in protein chemistry. 70, 247-299 (2005).
  32. Collet, J., et al. Influence of Fibrin Network Conformation and Fibrin Fiber Diameter on Fibrinolysis Speed Dynamic and Structural Approaches by Confocal Microscopy. Arteriosclerosis, thrombosis, and vascular biology. 20, 1354-1361 (2000).
  33. Jörneskog, G., et al. Altered properties of the fibrin gel structure in patients with IDDM. Diabetologia. 39, 1519-1523 (1996).
  34. Svensson, J., et al. Acetylation and glycation of fibrinogen in vitro occur at specific lysine residues in a concentration dependent manner: A mass spectrometric and isotope labeling study. Biochemical and Biophysical Research Communications. 421, 335-342 (2012).
  35. Pieters, M., et al. Glycation of fibrinogen in uncontrolled diabetic patients and the effects of glycaemic control on fibrinogen glycation. Thrombosis Research. 120, 439-446 (2007).
  36. Baradet, T. C., Haselgrove, J. C., Weisel, J. W. Three-dimensional reconstruction of fibrin clot networks from stereoscopic intermediate voltage electron microscope images and analysis of branching. Biophysical journal. 68, 1551-1560 (1995).
  37. Campbell, R. A., Overmyer, K. A., Selzman, C. H., Sheridan, B. C., Wolberg, A. S. Contributions of extravascular and intravascular cells to fibrin network formation, structure, and stability. Blood. 114, 4886-4896 (2009).
  38. Curtis, D. J., et al. A study of microstructural templating in fibrin-thrombin gel networks by spectral and viscoelastic analysis. Soft Matter. 9, 4883-4889 (2013).
  39. Kim, E., et al. Correlation between fibrin network structure and mechanical properties: an experimental and computational analysis. Soft Matter. 7, 4983-4992 (2011).
  40. Keegan, P. M., Surapaneni, S., Platt, M. O. Sickle cell disease activates peripheral blood mononuclear cells to induce cathepsins k and v activity in endothelial cells. Anemia. 2012, 201781 (2012).
  41. Allison, A. Properties of sickle-cell haemoglobin. Biochemical Journal. 65, 212 (1957).
  42. Kuehl, R. O. . Design of experiments : statistical principles of research design and analysis. , (2000).
  43. Lindman, H. R. . Analysis of variance in experimental designs. , (1992).
  44. Pan, W., Galkin, O., Filobelo, L., Nagel, R. L., Vekilov, P. G. Metastable Mesoscopic Clusters in Solutions of Sickle-Cell Hemoglobin. Biophysical Journal. 92, 267-277 (2007).
  45. Wootton, D. M., Popel, A. S., Alevriadou, B. R. An experimental and theoretical study on the dissolution of mural fibrin clots by tissue-type plasminogen activator. Biotechnology and bioengineering. 77, 405-419 (2002).
  46. Sazonova, I. Y., et al. 127 Mathematic model of fibrin clot lysis by plasmin. Fibrinolysis and Proteolysis. 12, 45 (1998).
check_url/52019?article_type=t

Play Video

Cite This Article
Fan, N. K., Keegan, P. M., Platt, M. O., Averett, R. D. Experimental and Imaging Techniques for Examining Fibrin Clot Structures in Normal and Diseased States. J. Vis. Exp. (98), e52019, doi:10.3791/52019 (2015).

View Video