Summary

协议在骑自行车自然雌性大鼠学习条件性恐惧灭绝

Published: February 23, 2015
doi:

Summary

Gonadal hormones such as estrogen modulate memory formation in a number of experimental paradigms including fear extinction memory. This protocol describes a set of methods for investigating the influence of gonadal hormones specifically during extinction in naturally cycling females, including estrous cycle monitoring and exogenous estrogen administration.

Abstract

的条件性恐惧灭绝已被广泛研究在雄性啮齿动物。最近,已经有越来越多的研究表明,对某些行为的任务和应对行为的神经机制是在女性和男性不同。在调查研究使用雌性可以表示由于性腺激素在其动情周期的变化的一个挑战。本协议描述既定程序,在调查中雌性大鼠恐惧消退记忆的巩固雌激素的作用是有用的。发情周期和外源性雌激素的管理之前灭绝培训阶段可以在24小时后影响灭绝召回。这里描述的发情相鉴别阴道擦拭技术辅助检查和处理的自然循环性腺激素。使用这个基本啮齿动物模型可进一步划定由雌激素能调节中灭绝的恐惧记忆的机制女性。

Introduction

固有的性别差异在人类和啮齿类动物在不同的认知行为和学习的范式观察。例如,据报道,妇女一般有较强的口头和注重细节的能力,而男性有更好的空间能力1-3。这些性别差异可能是部分原因是由于性腺激素的影响。高雌激素水平提高,妇女更好的工作性能,但恶化的任务,男人通常做的很好4-6性能。虽然这方面的证据是引人注目的,有限的能力,以在人类研究中完全控制实验环境使得它以确定是否对行为这些效果可以特异性归因于激素难。动物研究,与此相反,允许完全控制的情况。

虽然恐惧消退的基本神经机制已经确定,并很好的研究,男性,目前还不清楚是否这些系统是在女性或他们如何在整个发情周期变化一样。恐惧空调和灭绝被广泛应用于行为范式在啮齿动物和人类进行相关的焦虑症的研究。鉴于妇女对焦虑症的风险较高,以及较高的症状的持续时间和严重程度7-13,这是至关重要的,包括女性在这些研究中。女性在这项研究中代表性不足可能是由于发情期的监测和会计的性激素的行为影响的挑战。实验室是做检查的女性中,往往没有报告或方法的研究,没有说明这方面遇到的问题。

新出现的证据在啮齿类动物表明,在恐惧中灭绝的性别差异是由性腺激素14-18调制。在恐惧条件,动物训练害怕一个特定的刺激。一些无筋介绍后的刺激下,动物学会不害怕线索,一个叫灭绝的过程。如何做好动物学习和巩固学习这个任务可以给灭绝训练一段时间后的消光回忆测试过程中应遵循的记忆。期间灭绝召回少恐惧的表情显示出良好的消记忆的巩固。从我们实验室最近的研究结果表明,雌激素能调节恐惧消退记忆的巩固和提高灭绝召回。具体来说,雌性大鼠被扑灭在发情前期,发情周期的阶段期间,循环雌激素水平的高峰,显示出增强记忆灭绝保留。与此相反,雌被熄灭在低雌动情后期阶段显示相对差的消光召回,它可以与外源性雌二醇给药之前或消退训练15,16后,立即得到改善。灭绝记忆巩固的神经机制(包括UDING性腺激素在女性中的作用)不清晰。

在动物实验中,激素的作用,可通过微创手术切除的程序,如阉割去势,并进行调查。随后,从手术后恢复,性腺激素往往外生一种行为的任务19的性能在操纵。这种方法提供了关于性激素关键信息和,因为它允许对性腺激素的良好控制的操作(在定时和剂量计)20-23是有用的。这种方法,然而,没有评估在整个发情周期发生也不它们代表“正常”的动物,从而限制了平移潜在对人的研究的天然存在的波动的影响。它已被充分证明了雌性激素水平峰值和下降的发情周期的特定阶段,和在循环内的雌激素受体的表达的变化,和卵巢切除后24。因此,有必要进行研究,女性用完整性腺和缩小的实验设计,以可靠地研究了高和低雌激素状态可能对女性在其整个生命周期的影响。

该协议的重点是雌激素对参与恐惧消退的神经生物学系统的作用。它描述了如何:1)认真监测发情周期,2)准备有效剂量雌激素的全身用药,和3)遵循的行为模式,包括恐惧空调,灭绝,并记得在自然循环雌性大鼠。此协议可与其它药理学和操纵细胞和分子的工具进行修改,以帮助研究,以更好地理解,在条件性恐惧观察消光特性的性别差异。注意,以下描述的过程是那些我们实验室内使用,且存在许多的这些过程的变化i的n中的文献。

Protocol

注:在本协议中的所有程序已经批准了小组委员会研究动物护理,作为该机构动物护理和使用委员会(IACUC)在马萨诸塞州总医院,并符合卫生准则的国家机构。 1.动物住房和处理程序抵达后,房屋成年SD雌性大鼠约8-10周龄(体重200-225克),在3-4英寸的塑料箱用木片床上用品组。维持它们在饮食中随意获得食物和水,并在12小时的光/暗周期。离开老鼠适应的住房条件?…

Representative Results

在这种恐惧灭绝召回的协议,冻结百分比是衡量恐惧的指标。动物熄灭很好,保留了灭绝培训的内存表现出较低的恐惧在行为测试期间灭绝召回的最后一天。雄性和雌性大鼠不显著在条件性恐惧表达的调节,消光期间不同,并且召回相( 图2)。然而,性别差异变得明显,当动物如高和低雌激素发情期组分别进行了分析。 ,在发情周期的低雌激素发情后期阶段进行消退训练雌鼠不记?…

Discussion

恐惧灭绝已被广泛研究在雄性大鼠调处下各种操作识别和评估条件性恐惧灭绝的神经机制。相对而言,很少有研究探讨雌性大鼠或性腺激素的恐惧消退的作用。具体研究雌激素对恐惧消退的影响,自然循环雌性大鼠受到了为期三天的行为范式。这个过程包括习惯/调理,灭绝,灭绝和召回阶段。使用此协议,它已经证明,雌性大鼠低雌激素发情后期阶段表现出较高的冻结(或受损灭绝召回)相比,…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Mohammed R. Milad is supported by NIMH grant R01 MH097880 and institutional funds from the Department of Psychiatry at MGH.

Materials

Name Company Catalog number Comments
Fear conditioning chamber Coulbourn Instruments
Graphic State Coulbourn Instruments
Sound-attenuating box Med Associates, Inc. NIR-022MD
Estradiol Sigma-Aldrich E1024 In sesame oil for subcutaneous injection
Sesame oil Sigma-Aldrich S3547-250ML
Freezescan Cleversys, Inc.
Dip quick stain Jorgensen Laboratories, Inc. J0322A1, J0322A2, J0322A3
Cotton-tipped applicators Fisher Scientific 23-400-114 6-inch, sterile
0.9% saline LabChem, Inc. LC23460-2 Sodium chloride w/v
Selectfrost microscope slides Fisher Scientific 12-550-003
Virex II 256 Diversey, Inc. 5019317 Dilute 1:256 with water
Luer-Lok Tip 1ml Syringes Becton Dickinson 309628
Hypodermic disposable needles Exelint International, Co. 26402 26-gauge

References

  1. Baron-Cohen, S., Knickmeyer, R. C., Belmonte, M. K. Sex differences in the brain: implications for explaining autism. Science. 310 (5749), 819-823 (2005).
  2. Voyer, D., Voyer, S., Bryden, M. P. Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychological Bulletin. 117 (2), 250-270 (1995).
  3. Pinker, S., Spelke, E. A Conversation with Steven Pinker and Elizabeth Spelke. The Science of Gender and Science. , (2005).
  4. Hampson, E. Estrogen-related variations in human spatial and articulatory-motor skills. Psychoneuroendocrinology. 15, 97-111 (1990).
  5. Hampson, E., Kimura, D. Reciprocal effects of hormonal fluctuations on human motor and perceptual-spatial skills. Behavioral Neuroscience. 102, 456-459 (1988).
  6. Hampson, E. Variations in sex-related cognitive abilities across the menstrual cycle. Brain and Cognition. 14 (1), 26-43 (1990).
  7. Kilpatrick, D. G., Resnick, H. S., Milanak, M. E., Miller, M. W., Keyes, K. M., Friedman, M. J. National estimates of exposure to traumatic events and PTSD prevalence using DSM-IV and DSM-5 criteria. Journal of Traumatic Stress. 26 (5), 537-547 (2013).
  8. Breslau, N. Gender differences in trauma and posttraumatic stress disorder. Journal of Gender-Specific Medicine. 5 (1), 34-40 (2002).
  9. Frans, O., Rimmo, P. A., Aberg, L., Fredrikson, M. Trauma exposure and post-traumatic stress disorder in the general population. Acta Psychiatrica Scandinavica. 111 (4), 291-299 (2005).
  10. Breslau, N., Kessler, R. C., Chilcoat, H. D., Schultz, L. R., Davis, G. C., Andreski, P. Trauma and posttraumatic stress disorder in the community: the 1996 Detroit Area Survey of Trauma. Archives of General Psychiatry. 55 (7), 626-632 (1996).
  11. Seedat, S., Stein, D. J., Carey, P. D. Post-traumatic stress disorder in women: epidemiological and treatment issues. CNS Drugs. 19 (5), 411-427 (2005).
  12. Holbrook, T. L., Hoyt, D. B., Stein, M. B., Sieber, W. J. Gender differences in long-term posttraumatic stress disorder outcomes after major trauma: women are at higher risk of adverse outcomes than men. Journal of Trauma. 53 (5), 882-888 (2002).
  13. Labad, J., Menchon, J. M., Alonso, P., Segalas, C., Jimenez, S., Jaurrieta, N., et al. Gender differences in obsessive-compulsive symptom dimensions. Depression and Anxiety. 25 (10), 832-838 (2008).
  14. Gupta, R. R., Sen, S., Diepenhorst, L. L., Rudick, C. N., Maren, S. Estrogen modulates sexually dimorphic contextual fear conditioning and hippocampal long-term potentiation (LTP) in rats. Brain Research. 888, 356-365 (2001).
  15. Milad, M. R., Igoe, S. A., Lebron-Milad, K., Novales, J. E. Estrous cycle phase and gonadal hormones influence conditioned fear extinction. Neuroscience. 164 (3), 887-895 (2009).
  16. Zeidan, M., et al. Estradiol modulates medial prefrontal cortex and amygdala activity during fear extinction in women and female rats. Biological Psychiatry. 70 (10), 920-927 (2011).
  17. Lebron-Milad, K., Milad, M. R. Sex differences, gonadal hormones and the fear extinction network: implications for anxiety disorders. Biology of Mood & Anxiety Disorders. 2 (3), (2012).
  18. Rey, C. D., Lipps, J., Shansky, R. M. Dopamine d1 receptor activation rescues extinction impairments in low-estrogen female rats and induces cortical layer-specific activation changes in prefrontal-amygdala circuits. Neuropsychopharmacology. 39 (5), 1282-1289 (2013).
  19. Ström, J. O., Theodorsson, A., Ingberg, E., Isaksson, I. M., Theodorsson, E. Ovariectomy and 17β-estradiol Replacement in Rats and Mice: A Visual Demonstration. Journal of Visualized Experiments. , e4013 (2012).
  20. Markham, J. A., Pych, J. C., Juraska, J. M. Ovarian hormone replacement to aged ovariectomized female rats benefits acquisition of the morris water maze. Hormones & Behavior. 42 (3), 284-293 (2002).
  21. Markowska, A. L., Savonenko, A. V. Effectiveness of estrogen replacement in restoration of cognitive function after long-term estrogen withdrawal in aging rats. Journal of Neuroscience. 22 (24), 10985-10995 (2002).
  22. Bredemann, T. M., McMahon, L. L. 17β Estradiol Increases Resilience and Improves Hippocampal Synaptic Function in Helpless Ovariectomized Rats. Psychoneuroendocrinology. 42, 77-88 (2014).
  23. Grueso, R., et al. Early, but not late onset estrogen replacement therapy prevents oxidative stress and metabolic alterations caused by ovariectomy. Antioxidants and Redox Signaling. 20 (2), 236-246 (2014).
  24. Shughrue, P. J., Bushnell, C. D., Dorsa, D. M. Estrogen receptor messenger ribonucleic acid in female rat brain during the estrous cycle: a comparison with ovariectomized females and intact males. Endocrinology. 131 (1), 381-388 (1992).
  25. Frye, C. A., Erskine, M. S. Influence of time of mating and paced copulation on induction of pseudopregnancy in cyclic female rats. Journal of Reproduction and Fertility. 90 (2), 375-385 (1990).
  26. Becker, J. B., et al. Strategies and methods for research on sex differences in brain and behavior. Endocrinology. 146, 1650-1673 (2005).
  27. Westwood, F. R. The female rat reproductive cycle: a practical histological guide to staging. Toxicologic Pathology. 36 (3), 375-384 (2008).
  28. Hurn, P. D., Macrae, I. M. Estrogen as a Neuroprotectant in Stroke. Journal of Cerebral Blood Flow & Metabolism. 20, 631-652 (2000).
  29. Parasuraman, S., Raveendran, R., Kesavan, R. Blood sample collection in small laboratory animals. Journal of Pharmacology and Pharmacotherapeutics. 1 (2), 87-93 (2010).
  30. Gillies, G. E., McArthur, S. Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines. Pharmacological Reviews. 62 (2), 155-198 (2010).
  31. Tolin, D. F., Foa, E. B. Sex differences in trauma and posttraumatic stress disorder: a quantitative review of 25 years of research. Psychological Bulletin. 132, 959-992 (2006).
check_url/52202?article_type=t

Play Video

Cite This Article
Maeng, L. Y., Cover, K. K., Landau, A. J., Milad, M. R., Lebron-Milad, K. Protocol for Studying Extinction of Conditioned Fear in Naturally Cycling Female Rats. J. Vis. Exp. (96), e52202, doi:10.3791/52202 (2015).

View Video