Summary

树突分支中的海马区对小鼠的齿状回评

Published: March 31, 2015
doi:

Summary

We describe two methods for visualization and quantification of dendritic arborization in the hippocampus of mouse models: real-time and extended depth of field imaging. While the former method allows sophisticated topographical tracing and quantification of the extent of branching, the latter allows speedy visualization of the dendritic tree.

Abstract

Dendritic arborization has been shown to be a reliable marker for examination of structural and functional integrity of neurons. Indeed, the complexity and extent of dendritic arborization correlates well with the synaptic plasticity in these cells. A reliable method for assessment of dendritic arborization is needed to characterize the deleterious effects of neurological disorders on these structures and to determine the effects of therapeutic interventions. However, quantification of these structures has proven to be a formidable task given their complex and dynamic nature. Fortunately, sophisticated imaging techniques can be paired with conventional staining methods to assess the state of dendritic arborization, providing a more reliable and expeditious means of assessment. Below is an example of how these imaging techniques were paired with staining methods to characterize the dendritic arborization in wild type mice. These complementary imaging methods can be used to qualitatively and quantitatively assess dendritic arborization that span a rather wide area within the hippocampal region.

Introduction

动态改变在突触的数量和结构的发展,老化的标志,以及众多的神经变性疾病1-3。神经元的接收和整合突触信息的能力取决于树枝状形态和动态的改变在突触连接。事实上,一个正相关树突棘和突触数目,这既影响认知功能4之间存在。因此,这并不奇怪,在树突棘数目递减已与认知功能障碍相关的一些神经障碍5-7,促使在树突棘量化了极大的兴趣。然而,脊柱密度的量化仍然是一个耗时且繁琐的任务失败,以产生与通过该树突树突触的地形和分布的有用信息。幸运的是,染色方法( 高尔基-考克斯和doublecortin(DCX))结合与先进的成像技术可以被用来克服目前的障碍,并以可靠和迅速的方式产生树突分支的高清晰度图像。而高尔基-考克斯染色法可以部署到评估所有神经元树突8树枝状的状态,DCX可以部署鉴于神经发生在这两个标签新生神经元特别是在齿状回和脑室下区9,一个重要的考虑因素这些地区的整个生命周期10,11。

染色后,两个成像方法被部署,以评估树突特性:ⅰ)实时成像(RTI)和场成像(EDFI)的ⅱ)延伸的深度。的RTI技术提供的平均来跟踪和量化树枝状的长度和顺序沿个体树突段和分支。因此,它使一个估算的总面积和每个树突树占据的体积多个Specifically,在该RTI方法的用户连续地识别段和迭代地重新聚焦为神经元的跟踪软件收集在x,y和z的树枝状结构的坐标和重构树枝状结构在三维的轨迹。相比之下,EDFI方法提供了一种相当简单的,快速的用于通过产生合成图像,从而提供对整个z轴信息评估相当厚的组织标本树突密度的手段。这样做时,用户记录的高清晰度视频文件贯穿部的厚度,然后使用软件来搜索视频帧以识别点,其中一个像素是完全聚焦。随后,将聚焦像素被合并和集成到一个高分辨率,复合2D图像。这种复合图象包含分别在焦,不论其在z轴位置的所有像素。这些2D图像的定性和定量分析随后可以用来确定密度的树枝状分枝中的每个字段。

最后,我们提出了一个全景方法用于产生极高分辨率的图像进行分析和树突的评估在感兴趣的整个区域。这种技术可以被部署到克服缺乏接入的到非常高的分辨率和昂贵的数码相机。使用这种方法,因此一个捕获在沿x轴和y轴的不同位置的序列的图像,然后自动缝合在一起使用免费软件( 例如 ,图片复合编者)。值得注意的是,可以在一个相当宽的区域被用于树突分支的定性和定量评估此方法。

Protocol

注:实验按照批准委员会在动物研究在退伍军人事务帕洛阿尔托医疗保健系统的道德标准进行的。 1.高尔基 – 考克斯染色脑提取和染色第1天,通过放血安乐死前,深深地麻醉小鼠100毫克/千克氯胺酮和10毫克/公斤甲苯噻嗪。 小心地取出颅骨,并剖析了大脑。 首先去除皮肤上的头骨的顶部,放置一个弯曲剪刀对小脑的顶部并轻轻切穿平行颅盖到中央?…

Representative Results

从现存的和刚出生的齿状颗粒细胞产生树枝状的程度用两种高尔基-考克斯或DCX染色( 图1)在野生型小鼠进行分析。 DCX阳性细胞的树突状段被发现是13-36微米长。使用Kolmogorov-Smirnov检验树突长度的正态分布进行了测试(D = 0.1217,P <0.01,Liliefors P <0.001; 图4和5)。 在每个订单树枝状的长度段的分析,最长的片段被发现在树枝状(38.38 + …

Discussion

这里,两个方法被描述以量化在使用中与RTI和EDFI结合常规染色方法成熟和新生神经元树突分支的程度。采集的神经元的高分辨率图像提供了一个非常有效的方法,用于测试的神经变性疾病的有害影响,并反过来,提供了一种方法来评估靶向海马神经元的治疗策略。

而RTI方法用于捕获深度数据有关树枝状和地形的程度,所述EDFI方法不能提供有关该个体的段或树木的复杂度信息…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This research was supported by grants from the LuMind Foundation, Research Down Syndrome, and the Alzheimer’s Association (AS). CP was partially supported by a faculty development grant from the College of Nursing and Health Professions at Arkansas State University.

Materials

Name Company Catalog Number Comments
Modified Golgi-cox staining solution  Weill Cornell Medical College NA store at 4°C till use
1x Developing Solution (Stock 10x) Weill Cornell Medical College NA store at 4°C till use
30% Sucrose, Sigma CAS # 57-50-1 make fresh  in ddH2O
0.3% Gelatin Sigma CAS # 9000-70-8 NA
Graded Ethanol Solutions (20%, 30%, 40%, 50%, 80%. 90%, 95%. 100%) Sigma CAS 603-003-00-5 NA
Xylene Sigma CAS # 1330-20-7 NA
DPX Medium EMS  #13510 NA
Superfrost (+) white Electron Microscopy Sciences 71869-10 NA
Coverslip 22x50mm (VWR #48393-059) VWR  #4811-703 NA
DCX Antibody Santa Cruz Biotechnology sc-8066 4 C
DAB Sigma CAS Number 91-95-2   -20
OCT Tissue-tek 4583 NA
Tris Sigma CAS Number 77-86-1   NA
ABC Lite Vector PK4000 NA
Name Company Catalog Number Comments
Microscope Nikon Eclipse 80i
Digital Camera Nikon DS-Ri1
12 bit Camera  QImaging  01 MBF2000RF-CLR-12
Neurolucida System MBF Bioscience V.10
Image Composite Editor Microsoft 1.4.4.0
NIS Elements Nikon F 3.0
Image Pro Plus Mediacy Versin 7.00

References

  1. Bosch, M., Hayashi, Y. Structural plasticity of dendritic spines. Curr Opin Neurobiol. 22 (3), 383-388 (2012).
  2. Isaac, J. T. The synapse: center stage for many brain diseases. The Journal of Physiology. 587 (4), 727-729 (2009).
  3. Sheng, M., Sabatini, B. L., Südhof, T. C. Synapses and Alzheimer’s disease. Cold Spring Harbor Perspectives in Biology. , a005777 (2012).
  4. Alvarez, V. A., Sabatini, B. L. Anatomical and physiological plasticity of dendritic spines. Annu Rev Neurosci. 30, 79-97 (2007).
  5. Huttenlocher, P. R. Dendritic development in neocortex of children with mental defect and infantile spasms. Neurology. 24 (3), 203-210 (1974).
  6. Marin-Padilla, M. Double origin of the pericellular baskets of the pyramidal cells of the human motor cortex: a Golgi study. Brain Res. 38 (1), 1-12 (1972).
  7. Dang, V., et al. Formoterol, a long-acting β2 adrenergic agonist, improves cognitive function and promotes dendritic complexity in a mouse model of Down syndrome. Biol Psychiatry. 75 (3), 179-188 (2014).
  8. Dobrović, B., Curić, G., Petanjek, Z., Heffer, M. Dendritic morphology and spine density is not altered in motor cortex and dentate granular cells in mice lacking the ganglioside biosynthetic gene B4galnt1 A quantitative Golgi cox study. Coll Antropol. 35 (Suppl 1), 25-30 (2011).
  9. Dijkmans, T. F., van Hooijdonk, L. W., Fitzsimons, C. P., Vreugdenhil, E. The doublecortin gene family and disorders of neuronal structure. Cent Nerv Syst Agents Med Chem. 10 (1), 32-46 (2010).
  10. Guerra, E., Pignatelli, J., Nieto-Estévez, V., Vicario-Abejón, C. Transcriptional regulation of olfactory bulb neurogenesis. Anat Rec. 296 (9), 1364-1382 (2013).
  11. Imayoshi, I., Shimojo, H., Sakamoto, M., Ohtsuka, T., Kageyama, R. Genetic visualization of notch signaling in mammalian neurogenesis. Cell Mol Life Sci. 70 (12), 2045-2057 (2013).
  12. Gage, G. J., Kipke, D. R., Shain, W. Whole animal perfusion fixation for rodents. J Vis Exp. (65), 3564-3510 (2012).
  13. Das, G., Reuhl, K., Zhou, R. The Golgi-Cox method. Methods Mol Biol. 1018, 313-321 (2013).
  14. Juraska, J. M. Sex differences in developmental plasticity in the visual cortex and hippocampal dentate gyrus. Prog Brain Res. 61, 205-214 (1984).
  15. Gao, X., Deng, P., Zao, C. X., Chen, J. Moderate traumatic brain injury causes acute dendritic and synaptic degeneration in the hippocampal dentate gyrus. PLoS One. 6 (9), e24566 (2011).
  16. Zhang, L., Hernández, V. S., Estrada, F. S., Luján, R. Hippocampal CA field neurogenesis after pilocarpine insult: The hippocampal fissure as a neurogenic niche. J Chem Neuroanat. 56, 45-57 (2014).
  17. Merz, K., Lie, D. C. Evidence that Doublecortin is dispensable for the development of adult born neurons in mice. PLoS One. 8 (5), e62693 (2013).
  18. Hussaini, S. M., et al. Heat-induced antigen retrieval: an effective method to detect and identify progenitor cell types during adult hippocampal neurogenesis. J Vis Exp. (78), (2013).
check_url/52371?article_type=t

Play Video

Cite This Article
Das, D., Phillips, C., Lin, B., Mojabi, F., Akif Baktir, M., Dang, V., Ponnusamy, R., Salehi, A. Assessment of Dendritic Arborization in the Dentate Gyrus of the Hippocampal Region in Mice. J. Vis. Exp. (97), e52371, doi:10.3791/52371 (2015).

View Video