Summary

CAR性T细胞过继治疗的护理标准胶质母细胞瘤的上下文生成

Published: February 16, 2015
doi:

Summary

The lymphodepletive and immunomodulatory effects of chemotherapy and radiation standard of care can be leveraged to enhance the antitumor efficacy of T cell immunotherapy. We outline a method for generating EGFRvIII-specific chimeric antigen receptor (CAR) T cells and administering them in the context of glioblastoma standard of care.

Abstract

Adoptive T cell immunotherapy offers a promising strategy for specifically targeting and eliminating malignant gliomas. T cells can be engineered ex vivo to express chimeric antigen receptors specific for glioma antigens (CAR T cells). The expansion and function of adoptively transferred CAR T cells can be potentiated by the lymphodepletive and tumoricidal effects of standard of care chemotherapy and radiotherapy. We describe a method for generating CAR T cells targeting EGFRvIII, a glioma-specific antigen, and evaluating their efficacy when combined with a murine model of glioblastoma standard of care. T cells are engineered by transduction with a retroviral vector containing the anti-EGFRvIII CAR gene. Tumor-bearing animals are subjected to host conditioning by a course of temozolomide and whole brain irradiation at dose regimens designed to model clinical standard of care. CAR T cells are then delivered intravenously to primed hosts. This method can be used to evaluate the antitumor efficacy of CAR T cells in the context of standard of care.

Introduction

胶质母细胞瘤(GBM)是最常见的原发性恶性脑肿瘤,并且总是致命的。手术切除加上护理化疗和放疗的非特异性标准未能完全消除恶性细胞,导致少于15个月的患者一预后不佳这种疾病1。与此相反,免疫治疗提供了一种精确的方法用于特异性靶向肿瘤细胞,并因此具有作为一个非常有效的治疗平台抵押品毒性2-4的风险降低的潜力。 T细胞工程体外表达嵌合抗原受体(车)提供了一个通用的策略肿瘤免疫治疗。通过融合的抗体的胞外可变区与一种或多种细胞内的T细胞信号传导分子(多个),以代替全长主要组织相容性复合体的生成的CARs体(MHC)-restricted T细胞受体5。的抗体样抗原recogniti此模式上允许反应活性的抗原特异性T细胞识别并在没有MHC的响应肿瘤抗原,并且可以适合于几乎无限抗原剧目。

设计对多种肿瘤抗原的CAR T细胞表现出临床前功效和卓越的承诺在门诊6-9。具体而言,在GBM的上下文中,一辆汽车的T细胞平台靶向表皮生长因子受体变体III(EGFRvIII的),肿瘤特异性突变在细胞表面上表达的10,被证明延长生存胶质瘤的小鼠11。尽管他们的通用性,然而,汽车过继疗法的临床效益尚未完全实现,在部分肿瘤相关的免疫抑制和免疫逃避12-16以及在建立和维持抗原特异性T细胞在体内的挑战所致。借力护理(SOC)的标准与免疫治疗可以潜在地克服这几条升仿制品,从而在两者的临床前和临床的设置增强的功效。

SOC进行后切除GBM由大剂量替莫唑胺(TMZ),一个DNA烷化剂17,和全脑照射(WBI)1。这些治疗方法都是通过推测肿瘤MHC表达18-20上调及抗原的死肿瘤细胞17,19,21,22脱落,以协同与肿瘤疫苗。实际上,在加入的TMZ 20,2318,24的WBI导致在临床前设置免疫为主的治疗增强抗肿瘤功效。此外,像许多非特异性的细胞毒性化学治疗剂,TMZ是已知的导致全身性淋巴细胞25,26,其可以被利用作为宿主调节过继疗法平台27-29的一种手段。 TMZ介导的淋巴细胞缺失已显示增强抗原特异性T细胞的频率和功能,导致一个ADOP的增加的效力略去治疗平台对颅内肿瘤的30。在CAR疗法的上下文中,淋巴细胞缺失用作宿主调节的通过减少内源性抑制性T细胞31的数目,并通过减少竞争因子33诱导的稳态增殖32,从而提高抗肿瘤活性11,34的装置。定GBM SOC与免疫平台之间的协同关系,评价新颖代管疗法和疫苗平台在SOC的上下文是用于绘制关于功效有意义的结论是至关重要的。

在这个协议中,我们概述了鼠EGFRvIII的特异性CAR T细胞一起TMZ和WBI的生成和静脉内给药于小鼠的EGFRvIII阳性颅内肿瘤(参见图1进行治疗的时间表)的方法。简言之,将汽车的T细胞是由逆转录病毒转导所作体外 。人胚胎肾(HEK)293T细胞用DNA /脂质复合物(包含CAR载体和PCL-生态质粒),以产生病毒,然后将其用于转导被收获并在平行培养的活化鼠脾细胞进行转染。在汽车发生的过程中,轴承的EGFRvIII阳性颅内肿瘤的鼠宿主施用分馏全脑的X射线照射和全身TMZ治疗的剂量相当于临床SOC。 CAR的T细胞,然后静脉内递送至lymphodepleted主机。

下面的过程是在七个不同的阶段中描述:(1)管理的替莫唑胺对荷瘤小鼠,(2)全脑荷瘤小鼠的辐射;(3)转染,(4)脾切除和T细胞的制备,(5 )转导,(6)CAR T细胞培养和收获,以及荷瘤小鼠(7)CAR T细胞管理。这些阶段包括跨越6-7天,并同时执行多个步骤。

Protocol

这个协议是基于其中10只小鼠用10 7 CAR t各自细胞进行了处理的实验设计。这意味着10 8 CAR T细胞,将需要;屈服应为5×10 7 -1×10 8被高估到帐户中生存能力的损失。以下协议进行缩放,以产生大约200×10 6个细胞。然后将细胞静脉内施用给雌性C57BL / 6小鼠用9天建立同基因的EGFRvIII阳性颅内肿瘤,从现有KR158B星形细胞瘤或B16黑色素瘤细胞系的开发。与之同时CAR T细?…

Representative Results

通过转导与EGFRvIII的CAR逆转录病毒载体11中产生充足的T细胞。该载体,MSGV1,从SFGtcLuc_ITE4向量35,其中包含了鼠干细胞病毒(MSCV)长末端重复序列,扩展的gag区和包络剪接位显影(剪接供体,SD和剪接受体,SA),以及病毒包装信号(ψ)。含有人抗EGFRvIII的单链可变片段(scFv)139,在串联与鼠CD8TM的EGFRvIII的CAR,CD28,4-1BB,和CD3ζ胞内区域,被克隆到反转录病毒载体下游的NcoI位点(…

Discussion

这里所描述的治疗时间表旨在模拟护理临床标准,并充分利用其影响汽车继治疗。 CAR T细胞的剂量,TMZ治疗方案,和放射治疗施用可以被修改,以提高在体内的T细胞活性,淋巴细胞缺失,以及肿瘤杀伤。 TMZ治疗方案可以增加以得到主机myeloablation和过继转移的细胞30的膨胀增加。此外,TMZ的lymphodepletive效果可以通过低剂量被概括(4 – 6 Gy)进行单级分的全身照射(TBI),从而绕过SO…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to acknowledge Dr. Laura Johnson and Dr. Richard Morgan for providing the CAR retroviral construct. The authors also thank Giao Ngyuen for her assistance with dosimetry for whole brain irradiation. This work was supported by an NIH NCI grant 1R01CA177476-01.

Materials

Name of Material Company Catalog Number Comments/Description
pCL-Eco Retrovirus Packaging Vector Imgenex 10045P Helper vector for generating CAR retrovirus
Concanavalin A Sigma Aldrich C2010 Non-specific mitogen to induce T cell proliferation and viral transduction
Retronectin ClonTech/Takara T100B Facilitates retroviral transduction of T cells
Lipofectamine 2000 Life Technologies 11668-019 Transfection reagent
DMEM, high glucose, pyruvate Life technologies 11995-065 HEK293 culture media
RPMI 1640 Life Technologies 11875-093 T cell culture media
Opti-MEM I Reduced Serum Medium Life technologies 11058-021 Transfection media
200 mM L-Glutamine  Life technologies 25030-081 T cell culture media supplement
100 mM Sodium Pyruvate Life technologies 11360-070 T cell culture media supplement
100X MEM Non-Essential Amino Acids Solution  Life technologies 11140-050 T cell culture media supplement
55 mM 2-Mercaptoethanol  Life technologies 21985-023 Reducing agent to remove free radicals
Penicillin-Streptomycin (10,000 U/mL) Life technologies 15140-122 T cell culture media supplement
Gentamicin (50 mg/mL)  Life technologies 15750-060 T cell culture media supplement
GemCell U.S. Origin Fetal Bovine Serum Gemini Bio Products 100-500 Provides growth factors and nutrients for in vitro cell growth 
Bovine Serum Albumin (BSA), Fraction V—Standard Grade  Gemini Bio Products 700-100P Blocks non-specific binding of retrovirus to retronectin-coated plates
Pharm Lyse (10X concentrate)  BD Biosciences 555899 Lyses red blood cells during splenocyte processing
70 µm Sterile Cell Strainers Corning 352350 Filters away large tissue particles during splenocyte processing 
100 mm BioCoat Culture Dishes with Poly-D-Lysine  Corning 356469 Promotes HEK293 cell adhesion to maximize proliferation after transfection 
Temozolomide Best Pharmatech N/A Lyophilized powder prepared on the day of administration
Dimethyl Sulfoxide Sigma Life Sciences D2650 Necessary for complete dissolution of temozolomide
Saline Hospira IM 0132 (5/04) Solvent for temozolomide and ketamine/xylazine 
Ketathesia HCl Henry Schein Animal Health 11695-0701-1 Ketamine solution 
AnaSed Lloyd Inc N/A Xylazine sterile solution 100 mg/mL 

References

  1. Stupp, R., et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 352 (10), 987-996 (2005).
  2. Kantoff, P., Higano, C., Shore, N., Berger, E., Small, E. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. (363), 411-422 (2010).
  3. Hodi, F. S., et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 363 (8), 711-723 (2010).
  4. Schwartzentruber, D. J., et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med. 364 (22), 2119-2127 (2011).
  5. Gross, G., Gorochov, G., Waks, T., Eshhar, Z. Generation of effector T cells expressing chimeric T cell receptor with antibody type-specificity. Transplant Proc. 21 (1 Pt 1), 127-130 (1989).
  6. Pule, M. A., et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med. 14 (11), 1264-1270 (2008).
  7. Kochenderfer, J. N., et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 119 (12), 2709-2720 (2012).
  8. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A., June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 365 (8), 725-733 (2011).
  9. Brentjens, R. J., et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood. 118 (18), 4817-4828 (2011).
  10. Wikstrand, C. J., et al. Monoclonal antibodies against EGFRvIII are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res. 55 (14), 3140-3148 (1995).
  11. Sampson, J. H., et al. EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss. Clin Cancer Res. 20 (4), 972-984 (2014).
  12. Kuppner, M. C., Hamou, M. F., Sawamura, Y., Bodmer, S., de Tribolet, N. Inhibition of lymphocyte function by glioblastoma-derived transforming growth factor beta 2. J Neurosurg. 71 (2), 211-217 (1989).
  13. Wintterle, S., et al. Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res. 63 (21), 7462-7467 (2003).
  14. Fecci, P. E., et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res. 66 (6), 3294-3302 (2006).
  15. Wilmotte, R., et al. B7-homolog 1 expression by human glioma: a new mechanism of immune evasion. Neuroreport. 16 (10), 1081-1085 (2005).
  16. Yang, B. C., et al. Mediation of enhanced transcription of the IL-10 gene in T cells, upon contact with human glioma cells, by fas signaling through a protein kinase A-independent pathway. Journal of Immunology. 171 (8), 3947-3954 (2003).
  17. Reilly, S. M., et al. Temozolomide: a new oral cytotoxic chemotherapeutic agent with promising activity against primary brain tumours. Eur J Cancer. 29A (7), 940-942 (1993).
  18. Newcomb, E., et al. The Combination of Ionizing Radiation and Peripheral Vaccination Produces Long-term Survival of Mice Bearing Established Invasive GL261Gliomas. Clin Cancer Res. 12, 4730-4737 (2006).
  19. Park, B., Yee, C., Lee, K. M. The effect of radiation on the immune response to cancers. Int J Mol Sci. 15 (1), 927-943 (2014).
  20. Fritzell, S., et al. Intratumoral temozolomide synergizes with immunotherapy in a T cell-dependent fashion. Cancer Immunol Immunother. 62 (9), 1463-1474 (2013).
  21. Park, S. D., et al. Cross-priming by temozolomide enhances antitumor immunity of dendritic cell vaccination in murine brain tumor model. Vaccine. 25 (17), 3485-3491 (2007).
  22. Emens, L. A., Jaffee, E. M. Leveraging the activity of tumor vaccines with cytotoxic chemotherapy. Cancer Res. 65 (18), 8059-8064 (2005).
  23. Murphy, K. A., et al. An in vivo immunotherapy screen of costimulatory molecules identifies Fc-OX40L as a potent reagent for the treatment of established murine gliomas. Clin Cancer Res. 18 (17), 4657-4668 (2012).
  24. Newcomb, E. W., et al. Radiotherapy enhances antitumor effect of anti-CD137 therapy in a mouse Glioma model. Radiat Res. 173 (4), 426-432 (2010).
  25. Su, Y. B., Krown, S. E., Livingston, P. O., Wolchok, J. D., Chapman, P. B. How lymphotoxic is dose-intensified temozolomide? The glioblastoma experience. J Clin Oncol. 23 (18), 4235-4236 (2005).
  26. Neyns, B., Tosoni, A., Hwu, W. J., Reardon, D. A. Dose-dense temozolomide regimens: antitumor activity, toxicity, and immunomodulatory effects. Cancer. 116 (12), 2868-2877 (2010).
  27. Muranski, P., et al. Increased intensity lymphodepletion and adoptive immunotherapy-how far can we go. Nat Clin Pract Oncol. 3 (12), 668-681 (2007).
  28. Wrzesinski, C., Restifo, N. P. Less is more: lymphodepletion followed by hematopoietic stem cell transplant augments adoptive T-cell-based anti-tumor immunotherapy. Current Opinion in Immunology. 17 (2), 195-201 (2005).
  29. Dudley, M. E., et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol. 26 (32), 5233-5239 (2008).
  30. Sanchez-Perez, L. A., et al. Myeloablative Temozolomide Enhances CD8(+) T-Cell Responses to Vaccine and Is Required for Efficacy against Brain Tumors in Mice. Plos One. 8 (3), (2013).
  31. Su, Y. B., et al. Selective CD4+ lymphopenia in melanoma patients treated with temozolomide: a toxicity with therapeutic implications. J Clin Oncol. 22 (4), 610-616 (1200).
  32. Dummer, W., et al. T cell homeostatic proliferation elicits effective antitumor autoimmunity. J Clin Invest. 110 (2), 185-192 (2002).
  33. Gattinoni, L., et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med. 202 (7), 907-912 (2005).
  34. Wrzesinski, C., et al. Increased intensity lymphodepletion enhances tumor treatment efficacy of adoptively transferred tumor-specific T cells. J Immunother. 33 (1), 1-7 (2010).
  35. Hughes, M. S., et al. Transfer of a TCR gene derived from a patient with a marked antitumor response conveys highly active T-cell effector functions. Hum Gene Ther. 16 (4), 457-472 (2005).
  36. Morgan, R. A., et al. Recognition of glioma stem cells by genetically modified T cells targeting EGFRvIII and development of adoptive cell therapy for glioma. Hum Gene Ther. 23 (10), 1043-1053 (2012).
  37. Kerkar, S. P., et al. Genetic engineering of murine CD8+ and CD4+ T cells for preclinical adoptive immunotherapy studies. J Immunother. 34 (4), 343-352 (2011).
check_url/52397?article_type=t

Play Video

Cite This Article
Riccione, K., Suryadevara, C. M., Snyder, D., Cui, X., Sampson, J. H., Sanchez-Perez, L. Generation of CAR T Cells for Adoptive Therapy in the Context of Glioblastoma Standard of Care. J. Vis. Exp. (96), e52397, doi:10.3791/52397 (2015).

View Video