Summary

电子通道造影的快速III-V异质特征

Published: July 17, 2015
doi:

Summary

The use of electron channeling contrast imaging in a scanning electron microscope to characterize defects in III-V/Si heteroexpitaxial thin films is described. This method yields similar results to plan-view transmission electron microscopy, but in significantly less time due to lack of required sample preparation.

Abstract

Misfit dislocations in heteroepitaxial layers of GaP grown on Si(001) substrates are characterized through use of electron channeling contrast imaging (ECCI) in a scanning electron microscope (SEM). ECCI allows for imaging of defects and crystallographic features under specific diffraction conditions, similar to that possible via plan-view transmission electron microscopy (PV-TEM). A particular advantage of the ECCI technique is that it requires little to no sample preparation, and indeed can use large area, as-produced samples, making it a considerably higher throughput characterization method than TEM. Similar to TEM, different diffraction conditions can be obtained with ECCI by tilting and rotating the sample in the SEM. This capability enables the selective imaging of specific defects, such as misfit dislocations at the GaP/Si interface, with high contrast levels, which are determined by the standard invisibility criteria. An example application of this technique is described wherein ECCI imaging is used to determine the critical thickness for dislocation nucleation for GaP-on-Si by imaging a range of samples with various GaP epilayer thicknesses. Examples of ECCI micrographs of additional defect types, including threading dislocations and a stacking fault, are provided as demonstration of its broad, TEM-like applicability. Ultimately, the combination of TEM-like capabilities – high spatial resolution and richness of microstructural data – with the convenience and speed of SEM, position ECCI as a powerful tool for the rapid characterization of crystalline materials.

Introduction

晶体缺陷和微观结构的详细特征是半导体材料和因为这样的缺陷装置研究的一个非常重要的方面,可能对设备性能有显著,不利影响。目前,透射电子显微镜(TEM)是最广泛接受和用于扩展缺陷的详细表征技术 – 位错,堆垛层错,孪晶,反相畴等 – 因为它使各种各样的充足的缺陷的直接成像空间分辨率。不幸的是,TEM是根本低通量的方法,由于长时间的样品制备时间,这可能会导致在研究和开发周期显著延迟和瓶颈。此外,样品的完整性,例如在作为生长应变状态而言,可样品制备过程中改变,留下的机会掺假的结果。

电子通道合作ntrast成像(ECCI)是互补的,并且在一些情况下,潜在的优越,技术TEM,因为它提供用于成像相同的扩展缺陷的替代方案中,高通量的方法。在外延材料的情况下,样品需要很少或几乎没有准备,使得ECCI更多的时间效率。此外有利的是,ECCI只需要一个场致发射扫描电子显微镜(SEM)配备有一个标准的环形磁极片安装背散射电子(BSE)检测器的事实; forescatter几何也可以使用,但需要稍微更专门的设备和这里不讨论。共产国际执行委员会的信号是由已非弹性散射出在持续渠梁(电子波前),并通过多种额外的非弹性散射,能够逃脱样本背面通过表面1类似的两到电子束TEM,也能够通过奥里SEM中执行ECCI在特定衍射条件nting样品,使入射电子束满足晶体布拉格条件( 窜),如使用低倍率的电子通道模式(执委会)确定; 1,2参见图1中的例子。简单地说,紧急避孕药提供入射电子束衍射/窜的定向空间表示。低反向散射信号造成3黑线表示布拉格条件得到满足( ,菊池线)束样本方向,这将产生强烈的窜,而明亮区域表示高后向散射,非衍射条件。相对于菊池图案通过电子背散射衍射(EBSD)或TEM产生,这是通过传出电子衍射形成,左炔诺孕酮丸则入射电子衍射/窜的结果。

在实践中,受控衍射条件ECCI通过调节样品方位实现,VIA倾斜和/或旋转下低倍率,使得代表所关心的良好定义的布拉格条件的ECP特征 – 例如,一个[400]或[220]菊池带/线 – 是一致的扫描电镜的光轴。过渡由于角度范围入射电子束的所得限制到高倍率的话,有效地选择用于理想地只对应于从选择的衍射条件散射BSE信号。以这种方式,可以观察到的缺陷提供衍射对比度,例如位错。正如在TEM中,通过这样的缺陷提出的成像对比度由标准隐形标准确定, 克·(二X U)= 0和g·B = 0,其中g表示衍射载体; b伯格斯矢量, u线的方向。4本因为从飞机的缺陷扭曲将包含有关信息,仅电子衍射所说的故障发生的现象。

迄今为止,ECCI已主要被用于图像特征和缺陷处或附近进行,例如功能性材料如锑化镓,5的SrTiO 3,5GaN,6-9以及SiC样品表面10,11这种限制的表面的结果100纳米 – 共产国际执行委员会信号本身,其中构成该信号的BSE来自约10的深度范围的敏感的性质。此深度分辨极限最显著贡献是扩大和阻尼的在正在进行电子波前(引导电子),作为深度的函数进入晶体,由于电子的损失,以散射事件,从而降低了最大潜在BSE信号。1尽管如此,一些程度的深度分辨率的已报道在以前的工作在Si 1-X的x / Si和的In x Ga的1-x As中 /砷化镓异质结构,12,13以及更近期(以及本文)14,其中ECCI用于埋葬在在晶格失配的异质界面图像失配位错上的GaP / Si的异质结构中,作者深达100纳米(深度较高可能性可能)。

这里详述的工作,ECCI用于研究的GaP外延生长在Si(001),一个复杂的材料集成系统与应用朝向等领域光伏和光电。的GaP / Si是特别令人感兴趣的为变质的整合的潜在途径(晶格失配)的III-V族半导体上成本效益的Si衬底。多年来,在这个方向上的努力一直困扰着失控产生大量的heterovalent核有关的缺陷,包括反相畴,堆垛层错和微孪晶。这种缺陷不利于器件性能,ESPEcially光伏,由于这样的事实,它们可以是电活性,作为载流子复合中心,并且也可阻碍界面位错滑移,从而导致更高的位错密度。15然而,由作者最近的努力和其他人已经导致开发成功能产生间隙对硅薄膜不含这些核有关的缺陷的外延工艺,从而16-19铺平了道路继续前进。

因为的GaP和Si(在RT 0.37%)之间的小的,但不可忽略的,晶格错配的尽管如此,失配位错的产生是不可避免的,并且确实是必要的​​,以产生完全松弛外延层。 GAP,其FCC为基础的闪锌矿结构,往往会产生60°位错型(混合边缘和螺钉)滑移系统,这是glissile,可以通过长网滑行长度释放大量的应变上。额外的复杂性也通过在失配引入的的GaP和Si的热膨胀系数,这导致增加的晶格失配随温度升高( ,≥0.5%的失配,在典型的生长温度)。20由于穿透位错的段组成的失配位错环的剩余部分(连同界面失配和晶体表面)是众所周知的与其相关的非辐射载流子复合性能,因此降低设备的性能,21它充分理解其性质和演变,使得它们的数量可以最小化是很重要的。界面失配位错的详细的表征可因此提供的关于系统的位错动力学的大量信息。

这里,我们描述的协议利用SEM进行ECCI并提供它的功能和优势的例子。这里有一个重要的区别是使用共产国际执行委员会执行微观characteri排序的矩阵特殊积通常通过TEM进行的,而ECCI提供的等效的数据,但在一个显著较短的时间帧由于显著降低样品制备的需要;在对具有相对光滑表面的外延样品的情况下,没有有效的在所有需要的样品制备。为缺陷和失配位错一般表征使用ECCI的描述,与设置观察结晶缺陷的一些例子。的隐形标准上的界面失配位错的阵列的观察成像对比度的影响,然后说明。这之后是ECCI如何能够被用于执行表征的重要模式示范 – 在这种情况下,研究,以确定的GaP硅上的临界厚度为位错成核 – 提供的TEM状数据,但是从一个方便SEM和显著降低的时间框架。

Protocol

该协议是写的,读者将有标准SEM操作的工作理解的假设。根据制造商,型号,甚至软件版本,每SEM可以有显著不同的硬件和/或软件接口。同样可以相对于所述仪器的内部结构进行说;以下时这个协议中,因为即使在样本大小/几何形状,样品的取向(倾斜,旋转)相对小的变化,和工作距离,可呈现一个风险用于与磁极片的接触操作者必须谨慎和观察,特别是如果不eucentric高度。这里提供的说明是?…

Representative Results

间隙/硅样品本研究中通过金属有机化学气相沉积(MOCVD)在Aixtron的3×2紧密耦合喷头反应器以下作者的以前报道的异质外延工艺生长。17全部生长被4英寸硅(执行001)衬底为6°取向差故意(边角料)推向[110]。共产国际执行委员会的所有影像进行作为生长样品没有进一步的样品制备任何(除裂解产生约为1厘米×1厘米件加载到SEM)。 不同衍射条件下捕获的的GaP / Si的样?…

Discussion

25千伏的加速电压被用于这一研究。加速电压将决定电子束的穿透深度;用更高的加速电压,会有BSE信号从样品中更深处的到来。高的加速电压被选择为这个系统,因为它允许位错是远离所述样品的表面上,埋在界面的可视性。其他类型的缺陷/功能可能或多或少可见取决于样品的种类不同加速电压。

如先前所讨论的,不可见性标准将确定哪些特征具有在使用中的特定衍射条件…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by the Department of Energy under the FPACE program (DE-EE0005398), the Ohio State University Institute for Materials Research, and the Ohio Office of Technology Investments’ Third Frontier Program.

Materials

Sirion Field Emission SEM FEI/Phillips 516113 Field emission SEM with beam voltage range of 200 V – 30 kV, equipped with a backscattered electron detector
Sample of Interest Internally produced N/A Synthesized/grown in-house via MOCVD
PELCO SEMClip Ted Pella, Inc. 16119-10 Reusable, non-adhesive SEM sample stub (adhesive attachment will also work)

References

  1. Zaefferer, S., Elhami, Theory and application of electron channelling contrast imaging under controlled diffraction conditions. Acta Mater. 75, 20-50 (2014).
  2. Crimp, M. A. Scanning electron microscopy imaging of dislocations in bulk materials, using electron channeling contrast. Microsc. Res. Tech. 69 (5), 374-381 (2006).
  3. Joy, D. C., Newbury, D. E., Davidson, D. L. Electron channeling patterns in the scanning electron microscope. J. Appl. Phys. 53 (8), R81-R122 (1982).
  4. Williams, D. B., Carter, C. B. . Transmission Electron Microscopy: A Textbook for Materials Science. , (2009).
  5. Picard, Y. N., et al. Future Prospects for Defect and Strain Analysis in the SEM via Electron Channeling. Micros. Today. 20 (2), 12-16 (2012).
  6. Naresh-Kumar, G., et al. Rapid Nondestructive Analysis of Threading Dislocations in Wurtzite Materials Using the Scanning Electron Microscope. Phys. Rev. Lett. 108 (13), 135503 (2012).
  7. Naresh-Kumar, G., et al. Electron channeling contrast imaging studies of nonpolar nitrides using a scanning electron microscope. Appl. Phys. Lett. 102 (14), 142103 (2013).
  8. Kamaladasa, R. J., et al. Identifying threading dislocations in GaN films and substrates by electron channelling. J. Microsc. 244 (3), 311-319 (2011).
  9. Picard, Y. N., et al. Nondestructive analysis of threading dislocations in GaN by electron channeling contrast imaging. Appl. Phys. Lett. 91 (9), 094106 (2007).
  10. Picard, Y. N., et al. Electron channeling contrast imaging of atomic steps and threading dislocations in 4H-SiC. Appl. Phys. Lett. 90 (23), 234101 (2007).
  11. Picard, Y., et al. Epitaxial SiC Growth Morphology and Extended Defects Investigated by Electron Backscatter Diffraction and Electron Channeling Contrast Imaging. J. Electron. Mater. 37 (5), 691-698 (2008).
  12. Wilkinson, A. J. Observation of strain distributions in partially relaxed In0.2Ga0.8As on GaAs using electron channelling contrast imaging. Philos. Mag. Lett. 73 (6), 337-344 (1996).
  13. Wilkinson, A. J., Anstis, G. R., Czernuszka, J. T., Long, N. J., Hirsch, P. B. Electron Channeling Contrast Imaging of Interfacial Defects in Strained Silicon-Germanium Layers on Silicon. Philos. Mag. A. 68 (1), 59-80 (1993).
  14. Carnevale, S. D., et al. Rapid misfit dislocation characterization in heteroepitaxial III-V/Si thin films by electron channeling contrast imaging. Appl. Phys. Lett. 104 (23), 232111 (2014).
  15. Kvam, E. Interactions of dislocations and antiphase (inversion) domain boundaries in III–V/IV heteroepitaxy. J. Electron. Mater. 23 (10), 1021-1026 (1994).
  16. Grassman, T. J., et al. Control and elimination of nucleation-related defects in GaP/Si(001) heteroepitaxy. Appl. Phys. Lett. 94 (23), 232106 (2009).
  17. Grassman, T. J., et al. Nucleation-related defect-free GaP/Si(100) heteroepitaxy via metal-organic chemical vapor deposition. Appl. Phys. Lett. 102 (14), 142102 (2013).
  18. Volz, K., et al. GaP-nucleation on exact Si(001) substrates for III/V device integration. J. Cryst. Growth. 315 (1), 37-47 (2011).
  19. Beyer, A., et al. GaP heteroepitaxy on Si(001): Correlation of Si-surface structure, GaP growth conditions, and Si-III/V interface structure. J. Appl. Phys. 111 (8), 083534 (2012).
  20. Touloukian, Y. S. . Thermal Expansion: Nonmetallic Solids. , (1977).
  21. Yamaguchi, M. Dislocation density reduction in heteroepitaxial III-V compound films on Si substrates for optical devices. J. Mater. Res. 6 (2), 376-384 (1991).
  22. Nemanich Ware, R. J., Gray, J. L., Hull, R. Analysis of a nonorthogonal pattern of misfit dislocation arrays in SiGe epitaxy on high-index Si substrates. J. Appl. Phys. 95 (1), 115-122 (2004).
  23. Ghandhi Ayers, S. K., Schowalter, L. J. Crystallographic tilting of heteroepitaxial layers. J. Cryst. Growth. 113 (3-4), 430-440 (1991).
  24. Yamane, T., Kawai, Y., Furukawa, H., Okada, A. Growth of low defect density GaP layers on Si substrates within the critical thickness by optimized shutter sequence and post-growth annealing. J. Cryst. Growth. 312 (15), 2179-2184 (2010).
  25. Jimbo Soga, T., Umeno, M. Dislocation Generation Mechanisms For GaP On Si Grown By Metalorganic Chemical-Vapor-Deposition. Appl. Phys. Lett. 63 (18), 2543-2545 (1993).
  26. Weidner, A., Martin, S., Klemm, V., Martin, U., Biermann, H. Stacking faults in high-alloyed metastable austenitic cast steel observed by electron channelling contrast imaging. Scripta Mater. 64 (6), 513-516 (2011).
check_url/52745?article_type=t

Play Video

Cite This Article
Deitz, J. I., Carnevale, S. D., Ringel, S. A., McComb, D. W., Grassman, T. J. Electron Channeling Contrast Imaging for Rapid III-V Heteroepitaxial Characterization. J. Vis. Exp. (101), e52745, doi:10.3791/52745 (2015).

View Video