Summary

皮层下的多功能小鼠模型白质行程轴索变性和白质神经生物学的研究

Published: March 17, 2016
doi:

Summary

Here we present methodology for the production of a focal stroke in murine white matter by local injection of an irreversible endothelial nitric oxide synthase (eNOS) inhibitor (L-Nio). Presented are two stereotactic variations, retrograde neuronal tracing, and fresh tissue labeling and dissection that expand the potential applications of this technique.

Abstract

中风影响白质占的临床冲程演示高达25%,在费率可能5-10倍更大默默地发生,并且显著血管性痴呆的发展有助于。存在焦白质中风的几个型号,这缺乏适当的模式阻碍了参与这类中风后损伤反应和修复neurobiologic机制的理解。其他皮层下中风模型的主要限制是,它们不灶性限制梗塞的白质或已经主要在非鼠物种得到验证。这限制应用各种各样的鼠研究工具来研究白质中风的神经生物学的能力。在这里,我们提出了一个方法,为可靠的生产使用的是不可逆的eNOS抑制剂局部注射鼠白质的焦点中风。我们还提出对一般协议,包括两个独特的立体几个变化变型中,逆行神经追踪,以及新鲜组织标记和解剖,大大扩大该技术的潜在应用。这些变化允许多种方法来分析的行程这个共同的和充分研究形式neurobiologic影响。

Introduction

Stroke affecting the subcortical white matter is a common clinical entity, accounting for up to 25% of clinical strokes annually in the US 1. Ischemic damage to white matter also occurs silently at a significantly higher rate and contributes to the development of vascular dementia 2,3. Presently, patients with this form of cerebral ischemia have few, if any treatment choices. Despite the clinical importance of this disease, few clinically relevant animal models exist 4,5.

The goal of this protocol is to produce a focal ischemic lesion within the murine white matter. This murine model of human disease allows the specific study of axonal injury response to stroke and how the cellular elements of white matter, namely oligodendrocytes and astrocytes along with axons, respond to and repair after stroke.

Previous reports have described a model of subcortical white matter stroke using endothelin-1 (ET-1) 6 that is similar to the one described here. Several key changes to the experimental protocol have been made thereby the potential uses of this model have expanded 7,8. This protocol provides a reliable and modifiable strategy to produce a focal stroke within mouse brain white matter.

The major advantages of this model are the use of a chemical endothelial nitric oxide synthase (eNOS) inhibitor N(5)-(1)-iminoethyl-L-ornithine HCl (L-Nio) 9 with no known paracrine effects on cellular elements of white matter which had been a complication of models using endothelin-1 10. In addition, the stereotactic targeting of white matter in the mouse allows the use of any variety of transgenic or knockout strains, greatly expanding the available tools to determine the effect of stroke on brain white matter. Here, two variations on this technique are described and demonstrate some of the additional variations that can be utilized to enhance the understanding of axonal and white matter damage and repair after stroke.

Protocol

在这个协议中使用的动物是按照由加州大学洛杉矶分校的动物护理和使用委员会的批准大学的程序进行。 注:确定目标人群小鼠开始。在以前的研究中,只有雄性野生型C57 / BL6小鼠已被使用,但是各种转基因或基因敲除小鼠也可以使用。注意,立体定向坐标基于C57 / BL6解剖。建议每个用户最初验证中风白质的定位。 1.白质行程感应 – 内侧斜角方法<li…

Representative Results

使用提出的模型,白质底层前肢感觉运动皮层能够可靠地针对性。此化学诱导中风模型产生焦轴突和髓磷脂损失,星形胶质细胞增生,和小神经胶质细胞( 图1),如在人类腔隙性脑梗死通常看到。通过使用三次注射,临床有用的模型建立与前肢运动任务7月初,障碍和脑组织经验,一个小而显著部分缺血的免疫,免疫和生化技术是在定量层面?…

Discussion

已经描述了若干皮层下行程的前模型,包括内皮素-1的焦点注射进入内囊,皮层下白质和纹状体在大鼠12-14和鼠标6,15。更近的小焦点冲程模型已经利用在颈动脉16胆固醇微栓子注射和单个穿透动脉17的光化学闭塞。每个模型都有有利有弊5。目前描述的模型产生具有许多模仿人类腔隙性脑梗塞,包括轴突异常和损失,髓鞘退化,焦距坏死核心和临床赤字是最?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

SN和MDD从NIH K08 NS083740和神经病学的加州大学洛杉矶分校部门的支持。 AJG承认由仪博士和谢尔登·阿德尔森G.医学研究基金会和拉里·希尔布鲁姆L.基金会的支持。九龙十分感谢美国心脏协会14BFSC17760005 ASA-Bugher卒中中心的支持。 ILL,EGS和STC是由美国国立卫生研究院R01 NS071481支持。 JDH确认来自美国国立卫生研究院K08 NS083740支持。

Materials

L-N5-(1-Iminoethyl)ornithine, Dihydrochloride Calbiochem 400600-20MG
Isoflurane Phoenix Pharmaceutical, Inc. NDC 57319-559-06
Capillary tubes World Precision Instruments 50-821-807
Picospritzer Parker Instrumentation Picospritzer II
Stereotactic setup Kent Scientific KSC51725
Pipette puller KOPF Model 720
Stereomicroscope SZ51 Olympus 88-124
Fine scissors Fine Scientific Tools 14084-08
Forceps Harvard Apparatus PY2 72-8547
Curved Forceps Harvard Apparatus PY2 72-8598
Blunt dissection tool Fine Scientific Tools 10066-15
Drill Dremel 8220-1/28
Drill bits Fine Scientific Tools 19007-05
Vetbond 3M 1469SB 
Marcaine HOSPIRA NDC 0409-1610-50
Trimethoprim-Sulfamethaxole STI Pharmacy NDC 54879-007-16
Fluororuby Fluorochrome Inc 30mg
Paraformaldehyde Fisher O4042-500
Sucrose Fisher BP220-10
Cryostat Leica CM3050 S 14047033518
Glass slides Fisher 12-544-7
Fast Green  Sigma F7252-5G
Dissection microscope Nikon SMZ1500
23 gauge butterfly needle Fisher 14-840-35
10X Hank's Balanced Salt Solution Life Technologies 14065056
1M HEPES-KOH, pH 7.4 Affymetrix 16924
D-Glucose Sigma G8270
Sodium bicarbonate Sigma S5761
Cyclohexamide Sigma 01810

References

  1. Go, A. S., et al. Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation. 129, 28-292 (2014).
  2. Saini, M., et al. Silent stroke: not listened to rather than silent. Stroke. 43, 3102-3104 (2012).
  3. Koton, S., et al. Burden and outcome of prevalent ischemic brain disease in a national acute stroke registry. Stroke. 44, 3293-3297 (2013).
  4. Jiwa, N. S., Garrard, P., Hainsworth, A. H. Experimental models of vascular dementia and vascular cognitive impairment: a systematic review. J Neurochem. 115, 814-828 (2010).
  5. Sozmen, E. G., Hinman, J. D., Carmichael, S. T. Models that matter: white matter stroke models. Neurotherapeutics. 9, 349-358 (2012).
  6. Sozmen, E. G., Kolekar, A., Havton, L. A., Carmichael, S. T. A white matter stroke model in the mouse: axonal damage, progenitor responses and MRI correlates. J Neurosci Methods. 180, 261-272 (2009).
  7. Rosenzweig, S., Carmichael, S. T. Age-dependent exacerbation of white matter stroke outcomes: a role for oxidative damage and inflammatory mediators. Stroke. 44, 2579-2586 (2013).
  8. Hinman, J. D., Rasband, M. N., Carmichael, S. T. Remodeling of the axon initial segment after focal cortical and white matter stroke. Stroke. 44, 182-189 (2013).
  9. McCall, T. B., Feelisch, M., Palmer, R. M., Moncada, S. Identification of N-iminoethyl-L-ornithine as an irreversible inhibitor of nitric oxide synthase in phagocytic cells. Brit j pharmacol. 102, 234-238 (1991).
  10. Gadea, A., Aguirre, A., Haydar, T. F., Gallo, V. Endothelin-1 regulates oligodendrocyte development. J Neurosci. 29, 10047-10062 (2009).
  11. Dean, D. A. Preparation (pulling) of needles for gene delivery by microinjection. CSH prot. , (2006).
  12. Hughes, P. M., et al. Focal lesions in the rat central nervous system induced by endothelin-1. J. Neuropathol. Exp. Neurol. 62, 1276-1286 (2003).
  13. Whitehead, S. N., Hachinski, V. C., Cechetto, D. F. Interaction between a rat model of cerebral ischemia and beta-amyloid toxicity: inflammatory responses. Stroke. 36, 107-112 (2005).
  14. Frost, S. B., Barbay, S., Mumert, M. L., Stowe, A. M., Nudo, R. J. An animal model of capsular infarct: endothelin-1 injections in the rat. Behav Brain Res. 169, 206-211 (2006).
  15. Horie, N., et al. Mouse model of focal cerebral ischemia using endothelin-1. J Neurosci Methods. 173, 286-290 (2008).
  16. Wang, M., et al. Cognitive deficits and delayed neuronal loss in a mouse model of multiple microinfarcts. Neuroscience. 32, 17948-17960 (2012).
  17. Shih, A. Y., et al. The smallest stroke: occlusion of one penetrating vessel leads to infarction and a cognitive deficit. Nat Neurosci. 16, 55-63 (2013).
  18. Jung, K. J., et al. The role of endothelin receptor A during myelination of developing oligodendrocytes. J Korean Med Sci. 26, 92-99 (2011).
check_url/53404?article_type=t

Play Video

Cite This Article
Nunez, S., Doroudchi, M. M., Gleichman, A. J., Ng, K. L., Llorente, I. L., Sozmen, E. G., Carmichael, S. T., Hinman, J. D. A Versatile Murine Model of Subcortical White Matter Stroke for the Study of Axonal Degeneration and White Matter Neurobiology. J. Vis. Exp. (109), e53404, doi:10.3791/53404 (2016).

View Video