Summary

Et alsidigt murin model af subkortikale White Matter Stroke for Studiet af axonal degeneration og White Matter Neurobiologi

Published: March 17, 2016
doi:

Summary

Here we present methodology for the production of a focal stroke in murine white matter by local injection of an irreversible endothelial nitric oxide synthase (eNOS) inhibitor (L-Nio). Presented are two stereotactic variations, retrograde neuronal tracing, and fresh tissue labeling and dissection that expand the potential applications of this technique.

Abstract

Slagtilfælde rammer hvid substans udgør op til 25% af kliniske slagtilfælde præsentationer, sker lydløst ved hastigheder, der kan være 5-10 gange større, og bidrager væsentligt til udviklingen af ​​vaskulær demens. Kun få modeller af fokal hvide substans slagtilfælde eksisterer, og denne mangel på egnede modeller har hæmmet forståelse af de neurobiologic mekanismer involveret i skade respons og reparation efter denne form for slagtilfælde. Den væsentligste begrænsning af andre subkortikale slagtilfælde modeller er, at de ikke fokalt begrænse infarktet og den hvide substans eller er primært blevet valideret i ikke-murine arter. Dette begrænser muligheden for at anvende den brede vifte af murine forsknings- værktøjer til at studere neurobiologi af hvide substans slagtilfælde. Her præsenterer vi en metode til pålidelig produktion af et samlingspunkt slagtilfælde i murine hvide substans ved hjælp af en lokal injektion af en irreversibel eNOS inhibitor. Vi præsenterer også flere variationer af den generelle protokol herunder to unikke stereotaktiskvariationer, retrograd neuronal tracing, samt frisk mærkning væv og dissektion, som i høj grad udvide de potentielle anvendelser af denne teknik. Disse variationer muliggøre flere tilgange til at analysere de neurobiologic virkningerne af denne fælles og dublerede form for slagtilfælde.

Introduction

Stroke affecting the subcortical white matter is a common clinical entity, accounting for up to 25% of clinical strokes annually in the US 1. Ischemic damage to white matter also occurs silently at a significantly higher rate and contributes to the development of vascular dementia 2,3. Presently, patients with this form of cerebral ischemia have few, if any treatment choices. Despite the clinical importance of this disease, few clinically relevant animal models exist 4,5.

The goal of this protocol is to produce a focal ischemic lesion within the murine white matter. This murine model of human disease allows the specific study of axonal injury response to stroke and how the cellular elements of white matter, namely oligodendrocytes and astrocytes along with axons, respond to and repair after stroke.

Previous reports have described a model of subcortical white matter stroke using endothelin-1 (ET-1) 6 that is similar to the one described here. Several key changes to the experimental protocol have been made thereby the potential uses of this model have expanded 7,8. This protocol provides a reliable and modifiable strategy to produce a focal stroke within mouse brain white matter.

The major advantages of this model are the use of a chemical endothelial nitric oxide synthase (eNOS) inhibitor N(5)-(1)-iminoethyl-L-ornithine HCl (L-Nio) 9 with no known paracrine effects on cellular elements of white matter which had been a complication of models using endothelin-1 10. In addition, the stereotactic targeting of white matter in the mouse allows the use of any variety of transgenic or knockout strains, greatly expanding the available tools to determine the effect of stroke on brain white matter. Here, two variations on this technique are described and demonstrate some of the additional variations that can be utilized to enhance the understanding of axonal and white matter damage and repair after stroke.

Protocol

Brugen af ​​dyr i denne protokol er blevet udført i overensstemmelse med procedurer, der er godkendt af University of California Los Angeles Animal Care og brug Udvalg. Bemærk: Begynd med at identificere målet murine befolkning. I tidligere undersøgelser har kun mandlig vildtype-C57 / BL6-mus blevet anvendt, men forskellige transgene eller knockout-mus kan også anvendes. Bemærk at stereotaktiske koordinater er baseret på C57 / BL6 anatomi. Det anbefales, at hver bruger i første o…

Representative Results

Ved hjælp af modellen præsenteret, kan den hvide substans underliggende forben sensomotoriske cortex pålideligt målrettes. Dette kemisk induceret slagtilfælde model frembringer fokal aksonal og myelin tab, astrocytose og mikrogliose (figur 1), som typisk ses i humane lakunære infarkter. Ved at bruge tre injektioner, er en klinisk nyttig model etableret med tidlig nedskrivning på forben motoriske opgaver 7 og en lille, men væsentlig del af hjernevæv er…

Discussion

Et antal tidligere modeller af subkortikal slagtilfælde er blevet beskrevet herunder fokale injektioner af endothelin-1 i det indre kapsel, subkortikal hvid substans og striatum hos rotter 12-14 og mus 6,15. Nyere modeller af små fokale slagtilfælde har udnyttet kolesterol microemboli injektion i halspulsåren 16 og photothrombotic okklusion af en enkelt gennemtrængende arteriole 17. Hver af disse modeller har både fordele og ulemper 5. Den foreliggende beskrev…

Disclosures

The authors have nothing to disclose.

Acknowledgements

SN og MDD fået støtte fra NIH K08 NS083740 og UCLA Department of Neurology. AJG anerkender støtte fra Dr. Miriam og Sheldon G. Adelson Medical Research Foundation og Larry L. Hillblom Foundation. KLN taknemmeligt anerkender støtte fra American Heart Association 14BFSC17760005 ASA-Bugher Stroke Center. ILL, EGS og STC blev støttet af NIH R01 NS071481. JDH anerkender støtte fra NIH K08 NS083740.

Materials

L-N5-(1-Iminoethyl)ornithine, Dihydrochloride Calbiochem 400600-20MG
Isoflurane Phoenix Pharmaceutical, Inc. NDC 57319-559-06
Capillary tubes World Precision Instruments 50-821-807
Picospritzer Parker Instrumentation Picospritzer II
Stereotactic setup Kent Scientific KSC51725
Pipette puller KOPF Model 720
Stereomicroscope SZ51 Olympus 88-124
Fine scissors Fine Scientific Tools 14084-08
Forceps Harvard Apparatus PY2 72-8547
Curved Forceps Harvard Apparatus PY2 72-8598
Blunt dissection tool Fine Scientific Tools 10066-15
Drill Dremel 8220-1/28
Drill bits Fine Scientific Tools 19007-05
Vetbond 3M 1469SB 
Marcaine HOSPIRA NDC 0409-1610-50
Trimethoprim-Sulfamethaxole STI Pharmacy NDC 54879-007-16
Fluororuby Fluorochrome Inc 30mg
Paraformaldehyde Fisher O4042-500
Sucrose Fisher BP220-10
Cryostat Leica CM3050 S 14047033518
Glass slides Fisher 12-544-7
Fast Green  Sigma F7252-5G
Dissection microscope Nikon SMZ1500
23 gauge butterfly needle Fisher 14-840-35
10X Hank's Balanced Salt Solution Life Technologies 14065056
1M HEPES-KOH, pH 7.4 Affymetrix 16924
D-Glucose Sigma G8270
Sodium bicarbonate Sigma S5761
Cyclohexamide Sigma 01810

References

  1. Go, A. S., et al. Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation. 129, 28-292 (2014).
  2. Saini, M., et al. Silent stroke: not listened to rather than silent. Stroke. 43, 3102-3104 (2012).
  3. Koton, S., et al. Burden and outcome of prevalent ischemic brain disease in a national acute stroke registry. Stroke. 44, 3293-3297 (2013).
  4. Jiwa, N. S., Garrard, P., Hainsworth, A. H. Experimental models of vascular dementia and vascular cognitive impairment: a systematic review. J Neurochem. 115, 814-828 (2010).
  5. Sozmen, E. G., Hinman, J. D., Carmichael, S. T. Models that matter: white matter stroke models. Neurotherapeutics. 9, 349-358 (2012).
  6. Sozmen, E. G., Kolekar, A., Havton, L. A., Carmichael, S. T. A white matter stroke model in the mouse: axonal damage, progenitor responses and MRI correlates. J Neurosci Methods. 180, 261-272 (2009).
  7. Rosenzweig, S., Carmichael, S. T. Age-dependent exacerbation of white matter stroke outcomes: a role for oxidative damage and inflammatory mediators. Stroke. 44, 2579-2586 (2013).
  8. Hinman, J. D., Rasband, M. N., Carmichael, S. T. Remodeling of the axon initial segment after focal cortical and white matter stroke. Stroke. 44, 182-189 (2013).
  9. McCall, T. B., Feelisch, M., Palmer, R. M., Moncada, S. Identification of N-iminoethyl-L-ornithine as an irreversible inhibitor of nitric oxide synthase in phagocytic cells. Brit j pharmacol. 102, 234-238 (1991).
  10. Gadea, A., Aguirre, A., Haydar, T. F., Gallo, V. Endothelin-1 regulates oligodendrocyte development. J Neurosci. 29, 10047-10062 (2009).
  11. Dean, D. A. Preparation (pulling) of needles for gene delivery by microinjection. CSH prot. , (2006).
  12. Hughes, P. M., et al. Focal lesions in the rat central nervous system induced by endothelin-1. J. Neuropathol. Exp. Neurol. 62, 1276-1286 (2003).
  13. Whitehead, S. N., Hachinski, V. C., Cechetto, D. F. Interaction between a rat model of cerebral ischemia and beta-amyloid toxicity: inflammatory responses. Stroke. 36, 107-112 (2005).
  14. Frost, S. B., Barbay, S., Mumert, M. L., Stowe, A. M., Nudo, R. J. An animal model of capsular infarct: endothelin-1 injections in the rat. Behav Brain Res. 169, 206-211 (2006).
  15. Horie, N., et al. Mouse model of focal cerebral ischemia using endothelin-1. J Neurosci Methods. 173, 286-290 (2008).
  16. Wang, M., et al. Cognitive deficits and delayed neuronal loss in a mouse model of multiple microinfarcts. Neuroscience. 32, 17948-17960 (2012).
  17. Shih, A. Y., et al. The smallest stroke: occlusion of one penetrating vessel leads to infarction and a cognitive deficit. Nat Neurosci. 16, 55-63 (2013).
  18. Jung, K. J., et al. The role of endothelin receptor A during myelination of developing oligodendrocytes. J Korean Med Sci. 26, 92-99 (2011).
check_url/53404?article_type=t

Play Video

Cite This Article
Nunez, S., Doroudchi, M. M., Gleichman, A. J., Ng, K. L., Llorente, I. L., Sozmen, E. G., Carmichael, S. T., Hinman, J. D. A Versatile Murine Model of Subcortical White Matter Stroke for the Study of Axonal Degeneration and White Matter Neurobiology. J. Vis. Exp. (109), e53404, doi:10.3791/53404 (2016).

View Video