Summary

DamID-SEQ : 아데닌 - 메틸화 된 DNA 단편의 높은 처리량 시퀀싱에 의해 단백질 DNA 상호 작용의 게놈 넓은 매핑

Published: January 27, 2016
doi:

Summary

우리는 높은 처리량 시퀀싱 (DamID-SEQ)에 DNA 아데닌의 메틸화 식별 (DamID)을 결합하여 여기에 분석을 설명합니다. 이 개선 된 방법은 높은 해상도와 넓은 동적 범위를 제공하며, 허용 등과 칩 서열, RNA-SEQ 같은 다른 높은 처리량 시퀀싱 데이터와 함께 DamID-서열 데이터 분석

Abstract

The DNA adenine methyltransferase identification (DamID) assay is a powerful method to detect protein-DNA interactions both locally and genome-wide. It is an alternative approach to chromatin immunoprecipitation (ChIP). An expressed fusion protein consisting of the protein of interest and the E. coli DNA adenine methyltransferase can methylate the adenine base in GATC motifs near the sites of protein-DNA interactions. Adenine-methylated DNA fragments can then be specifically amplified and detected. The original DamID assay detects the genomic locations of methylated DNA fragments by hybridization to DNA microarrays, which is limited by the availability of microarrays and the density of predetermined probes. In this paper, we report the detailed protocol of integrating high throughput DNA sequencing into DamID (DamID-seq). The large number of short reads generated from DamID-seq enables detecting and localizing protein-DNA interactions genome-wide with high precision and sensitivity. We have used the DamID-seq assay to study genome-nuclear lamina (NL) interactions in mammalian cells, and have noticed that DamID-seq provides a high resolution and a wide dynamic range in detecting genome-NL interactions. The DamID-seq approach enables probing NL associations within gene structures and allows comparing genome-NL interaction maps with other functional genomic data, such as ChIP-seq and RNA-seq.

Introduction

아데닌 DNA 메틸화 식별 (DamID) -1,2-는 생체 내에서 DNA 단백질 상호 작용을 검출하는 방법이며 염색질 면역 (칩) 3로 대체 방법이다. 그것은 세포의 상대적으로 적은 양을 사용하고, DNA 또는 고도로 특이 항체와 단백질의 화학적 가교 결합을 필요로하지 않는다. 표적 단백질은 DNA 느슨하게 또는 간접적으로 연결된 경우 후자는 특히 유용하다. DamID 성공적 핵막 단백질 4-10, 11-13 염색질 관련 단백질, 염색질 변형 효소 14, 전사 인자 및 15-18 공동 인자와의 RNAi 기계 (19)를 포함하는 단백질의 다양한 결합 부위를 매핑하는데 사용되어왔다. 이 방법은 S. 등 다양한 유기체에서 적용 할 수있다 cerevisiae의 13, S. pombe 7, C. 엘레 9,17, D. melanogaster의 5,11,18,20, A. (21, 22)뿐만 아니라 마우스와 인간의 세포 라인 6,8,10,23,24 장대.

DamID 분석법의 개발은 내인성 아데닌 2 메틸화 결여 진핵 세포에서 아데닌 메틸화 DNA 단편의 특정 검출에 기초 하였다. 관심 E.의 DNA 결합 단백질로 이루어진 융합 단백질을 발현, 콜라이 DNA 메틸화 된 아데닌 (DAM)은 공간적 인접 (가장 크게 1킬로바이트 내의 최대 약 5킬로바이트까지)이다 게놈 2 단백질의 결합 부위에 GATC 서열의 아데닌 염기를 메틸화 할 수있다. 개질 된 DNA 단편은 특별히 관심 1,25,26의 단백질의 유전자 결합 부위를 검출하는 마이크로 어레이 혼성화 및 증폭 될 수있다. 이것은 원래 DamID 방법은 마이크로 어레이의 프로브 가용성 및 소정의 밀도에 의해 제한되었다. 따라서 우리는 높은 처리량 시퀀싱을 통합 한DamID 10이고 DamID-SEQ와 같은 방법을 지정. 짧은의 많은 수의 DamID-SEQ에서 생성 된 읽기 게놈 전체 단백질 DNA 상호 작용의 정확한 위치 파악을 할 수 있습니다. 우리는 DamID-서열이 게놈 핵 라미 (NL) 협회 (10) 유학을위한 마이크로 어레이에 의해 DamID보다 높은 해상도와 넓은 동적 범위를 한 것으로 나타났습니다. 이 개선 된 방법은 유전자 구조 (10) 내에 연관 NL 프로빙 수 있으며 이러한 칩 서열 및 RNA-SEQ 다른 높은 처리량 시퀀싱 데이터와의 비교를 용이하게한다.

여기에 설명 된 DamID-SEQ 프로토콜은 초기에 매핑 게놈 NL 협회 (10)을 위해 개발되었다. 우리는 E.에 마우스 또는 인간 라민의 B1을 테 더링하여 융합 단백질을 생성 대장균의 DNA 메틸화 된 아데닌과 C2C12 마우스 (데이터가 공개되지 않음) (10)과 IMR90 인간의 태아 폐 섬유 아 세포를 근육 모세포, 3T3 마우스 배아 섬유 아세포에서 프로토콜을 테스트했다. 이 프로토콜에서는, 우리는 C로 시작벡터 및 포유류 세포 onstructing 24 렌티 바이러스 감염에 의한 댐 연결형 융합 단백질을 발현. 다음으로, 우리는 아데닌 메틸화 DNA 단편을 증폭하고 다른 생물에 적용되어야 서열 라이브러리의 제조 상세한 프로토콜을 설명한다.

Protocol

1. 생성 및 융합 단백질 및 무료 댐 단백질의 발현 DamID 벡터에 관심 복제 단백질. 제조 업체의 프로토콜에 따라 관심 (POI)의 단백질 원하는 높은 충실도 DNA 중합 효소를 사용하고 적절한 프라이머의 cDNA를 증폭. 실험적 인서트의 적절한 증폭을 위해 최적의 증폭​​ 조건을 결정한다. 아가 로스 젤을 실행하고 제조 업체의 프로토콜에 따라 겔 추출 키트에 의해 POI…

Representative Results

댐-V5-LmnB1 융합 단백질은 면역 형광 염색법에 의한 내인성 라민 B 형 단백질 (그림 1)과 협력 지역화 것으로 확인되었다. 아데닌 메틸화 DNA 단편의 성공적인 PCR 증폭 DamID-SEQ위한 중요한 단계이다. 노 또는 명확하게 덜 증폭 (그림 2)가 발생한다 (리가없이 또는 PCR 템플릿없이, DpnI없이) 음성 대조군 동안 …

Discussion

Whether Dam-tagged proteins retain the functions of endogenous proteins should be examined before a DamID-seq experiment. The subcellular localization of Dam-tagged nuclear envelope proteins should always be determined and compared with that of the endogenous proteins. For studying transcription factors, it is suggested to examine whether the Dam-fusion protein can rescue the functions of the endogenous protein in regulating gene expression. This functional test can be performed in organisms in which knockout mutants of …

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Dr. Bas van Steensel for providing the DamID mammalian expression vectors. We thank Yale Center for Genome Analysis and the Genomics Core in Yale Stem Cell Center for advice on preparing NGS libraries and implementing high throughput DNA sequencing. This work was supported by the startup funding from Yale School of Medicine, a Scientist Development Grant from American Heart Association (12SDG11630031) and a Seed Grant from Connecticut Innovations, Inc. (13-SCA-YALE-15).

Materials

ViraPower Lentiviral Expression Systems Life Technologies K4950-00, K4960-00, K4970-00, K4975-00, K4980-00, K4985-00, K4990-00, K367-20, K370-20, and K371-20
Gateway BP Clonase II Enzyme Mix Life Technologies 11789-020
Gateway LR Clonase II Enzyme Mix Life Technologies 11791-020
DNeasy Blood & Tissue Kit (250) QIAGEN 69506 or 69504  
Gateway pDONR 201 Life Technologies 11798-014
293T cells American Type Culture Collection CRL-11268
Trypsin-EDTA (0.05%), phenol red Life Technologies 25300-054
DMEM, high glucose, pyruvate Life Technologies 11995-065
Fetal Bovine Serum Sigma F4135
Tris brand not critical
EDTA brand not critical
200 Proof EtOH brand not critical
Isopropanol brand not critical
Sodium Acetate brand not critical
DpnI New England Biolabs R0176 supplied with buffer
DamID adaptors "AdRt" and "AdRb" Integrated DNA Technologies sequences available in ref. 24; no phosphorylation of the 5' or 3' end to prevent self-ligation.
T4 DNA Ligase Roche Life Science 10481220001 supplied with buffer
DpnII New England Biolabs R0543 supplied with buffer
DamID PCR primer "AdR_PCR" Integrated DNA Technologies sequences available in ref. 24
Deoxynucleotide (dNTP) Solution Set New England Biolabs N0446 100 mM each of dATP, dCTP, dGTP and dTTP
Advantage 2  Polymerase Mix Clontech 639201 supplied with buffer
1Kb Plus DNA Ladder Life Technologies 10787018 1.0 µg/µl
QIAquick PCR Purification Kit QIAGEN 28104 or 28106
MinElute PCR Purification Kit QIAGEN 28004 or 28006 for an elution volume of less than 30 µl
SPRI beads / Agencourt AMPure XP Beckman Coulter A63880 apply extra mixing and more elution time if less than 40 µl elution buffer is used
Buffer EB QIAGEN 19086
NEBNext dsDNA Fragmentase New England Biolabs M0348 supplied with buffer
T4 DNA Ligase Reaction Buffer New England Biolabs B0202
T4 DNA Polymerase New England Biolabs M0203
DNA Polymerase I, Large (Klenow) Fragment New England Biolabs M0210
T4 Polynuleotide Kinase New England Biolabs M0201
Klenow Fragment (3’ -> 5’ exo-) New England Biolabs M0212 supplied with buffer
sequencing adaptors Integrated DNA Technologies sequences available in ref. 28
Quick Ligation Kit New England Biolabs M2200 used in 11.2; supplied with Quick Ligation Reaction Buffer and Quick T4 DNA Ligase
sequencing primer 1 and 2 Integrated DNA Technologies sequences available in ref. 28
KAPA HiFi PCR Kit Kapa Biosystems KK2101 or KK2102 supplied with KAPA HiFi DNA Polymerase, 5X KAPA HiFi Fidelity Buffer and 10mM dNTP mix
agarose Sigma Aldrich A4679
ethidium bromide Sigma Aldrich E1510-10ML 10 mg/ml
QIAquick Gel Extraction Kit QIAGEN 28704 or 28706
iTaq Universal SYBR Green Supermix Bio-Rad Laboratories 1725121 or 1725122
Spectrophotometer brand not critical
0.45 um PVDF Filter brand not critical
25 ml Seringe brand not critical
10 cm Tissue Culture Plates brand not critical
6-well Tissue Culture Plates brand not critical
S1000 Thermal Cycler Bio-Rad Laboratories
C1000 Touch Thermal Cycler Bio-Rad Laboratories for qPCR
Vortex Mixer brand not critical
Dry Block Heater or Thermomixer brand not critical
Microcentrifuge brand not critical
Gel electrophoresis system with power supply brand not critical
Magnet stand for purification of DNA with SPRI beads; should hold 1.5-2 ml tubes; brand not critical
UV transilluminator brand not critical
E-gel electrophoresis system Life Technologies G6400, G6500, G6512ST

References

  1. van Steensel, B., Delrow, J., Henikoff, S. Chromatin profiling using targeted DNA adenine methyltransferase. Nat Genet. 27, 304-308 (2001).
  2. van Steensel, B., Henikoff, S. Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol. 18, 424-428 (2000).
  3. Fu, A. Q., Adryan, B. Scoring overlapping and adjacent signals from genome-wide ChIP and DamID assays. Mol Biosyst. 5, 1429-1438 (2009).
  4. Guelen, L. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature. 453, 948-951 (2008).
  5. Kalverda, B., Pickersgill, H., Shloma, V. V., Fornerod, M. Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell. 140, 360-371 (2010).
  6. Kubben, N. Mapping of lamin A- and progerin-interacting genome regions. Chromosoma. 121, 447-464 (2012).
  7. Steglich, B., Filion, G. J., van Steensel, B., Ekwall, K. The inner nuclear membrane proteins Man1 and Ima1 link to two different types of chromatin at the nuclear periphery in S. pombe. Nucleus. 3, 77-87 (2012).
  8. Harr, J. C. Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins. J Cell Biol. 208, 33-52 (2015).
  9. Gonzalez-Aguilera, C. Genome-wide analysis links emerin to neuromuscular junction activity in Caenorhabditis elegans. Genome Biol. 15, R21 (2014).
  10. Wu, F., Yao, J. Spatial compartmentalization at the nuclear periphery characterized by genome-wide mapping. BMC Genomics. 14, 591 (2013).
  11. Filion, G. J. Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell. 143, 212-224 (2010).
  12. Vogel, M. J. Human heterochromatin proteins form large domains containing KRAB-ZNF genes. Genome Res. 16, 1493-1504 (2006).
  13. Venkatasubrahmanyam, S., Hwang, W. W., Meneghini, M. D., Tong, A. H., Madhani, H. D. Genome-wide, as opposed to local, antisilencing is mediated redundantly by the euchromatic factors Set1 and H2A.Z. Proc Natl Acad Sci U S A. 104, 16609-16614 (2007).
  14. Shimbo, T. MBD3 localizes at promoters, gene bodies and enhancers of active genes. PLoS Genet. 9, e1004028 (2013).
  15. Orian, A. Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev. 17, 1101-1114 (2003).
  16. Artegiani, B. Tox: a multifunctional transcription factor and novel regulator of mammalian corticogenesis. EMBO J. , (2014).
  17. Schuster, E. DamID in C. elegans reveals longevity-associated targets of DAF-16/FoxO. Mol Syst Biol. 6, 399 (2010).
  18. Bianchi-Frias, D. Hairy transcriptional repression targets and cofactor recruitment in Drosophila. PLoS Biol. 2, e178 (2004).
  19. Woolcock, K. J., Gaidatzis, D., Punga, T., Buhler, M. Dicer associates with chromatin to repress genome activity in Schizosaccharomyces pombe. Nat Struct Mol Biol. 18, 94-99 (2011).
  20. Luo, S. D., Shi, G. W., Baker, B. S. Direct targets of the D. melanogaster DSXF protein and the evolution of sexual development. Development. 138, 2761-2771 (2011).
  21. Germann, S., Gaudin, V. Mapping in vivo protein-DNA interactions in plants by DamID, a DNA adenine methylation-based method. Methods Mol Biol. 754, 307-321 (2011).
  22. Zhang, X. The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation. Nat Struct Mol Biol. 14, 869-871 (2007).
  23. Orian, A. Chromatin profiling, DamID and the emerging landscape of gene expression. Curr Opin Genet Dev. 16, 157-164 (2006).
  24. Vogel, M. J., Peric-Hupkes, D., van Steensel, B. Detection of in vivo protein-DNA interactions using DamID in mammalian cells. Nat Protoc. 2, 1467-1478 (2007).
  25. Greil, F., Moorman, C., van Steensel, B. DamID: mapping of in vivo protein-genome interactions using tethered DNA adenine methyltransferase. Methods Enzymol. 410, 342-359 (2006).
  26. de Wit, E., Greil, F., van Steensel, B. Genome-wide HP1 binding in Drosophila: developmental plasticity and genomic targeting signals. Genome Res. 15, 1265-1273 (2005).
  27. . Illumina TruSeq adaptors & PCR primers Available from: https://ethanomics.wordpress.com/chip-seq-library-construction-using-the-illumina-truseq-adapters/ (2015)
  28. . Optimization of PCR cycles for NGS Available from: https://ethanomics.wordpress.com/ngs-pcr-cycle-quantitation-protocol/ (2015)
  29. Bernstein, B. E. The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol. 28, 1045-1048 (2010).
  30. Encode Project Consortium. A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. 9, e1001046 (2011).
  31. Asp, P. Genome-wide remodeling of the epigenetic landscape during myogenic differentiation. Proc Natl Acad Sci U S A. 108, E149-E158 (2011).
  32. Hoppe, P. S., Coutu, D. L., Schroeder, T. Single-cell technologies sharpen up mammalian stem cell research. Nat Cell Biol. 16, 919-927 (2014).
  33. Avital, G., Hashimshony, T., Yanai, I. Seeing is believing: new methods for in situ single-cell transcriptomics. Genome Biol. 15, 110 (2014).
  34. Navin, N. E. Cancer genomics: one cell at a time. Genome Biol. 15, 452 (2014).
  35. Saliba, A. E., Westermann, A. J., Gorski, S. A., Vogel, J. Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res. 42, 8845-8860 (2014).
  36. Nagano, T. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature. 502, 59-64 (2013).
  37. Kind, J. Single-cell dynamics of genome-nuclear lamina interactions. Cell. 153, 178-192 (2013).
  38. Southall, T. D. Cell-type-specific profiling of gene expression and chromatin binding without cell isolation: assaying RNA Pol II occupancy in neural stem cells. Dev Cell. 26, 101-112 (2013).

Play Video

Cite This Article
Wu, F., Olson, B. G., Yao, J. DamID-seq: Genome-wide Mapping of Protein-DNA Interactions by High Throughput Sequencing of Adenine-methylated DNA Fragments. J. Vis. Exp. (107), e53620, doi:10.3791/53620 (2016).

View Video