Summary

体内生物传感器跟踪非凋亡胱天蛋白酶的活动在果蝇

Published: November 27, 2016
doi:

Summary

以检测健康细胞在包含蛋白酶的活性水平低的整体动物, 果蝇生成指定CaspaseTracker高度敏感的生物传感器。依赖性的caspase-生物传感器的活性在长寿命的健康细胞中检测遍布在没有死亡刺激的最佳条件下饲养成年动物的内部器官。

Abstract

Caspases are the key mediators of apoptotic cell death via their proteolytic activity. When caspases are activated in cells to levels detectable by available technologies, apoptosis is generally assumed to occur shortly thereafter. Caspases can cleave many functional and structural components to cause rapid and complete cell destruction within a few minutes. However, accumulating evidence indicates that in normal healthy cells the same caspases have other functions, presumably at lower enzymatic levels. Studies of non-apoptotic caspase activity have been hampered by difficulties with detecting low levels of caspase activity and with tracking ultimate cell fate in vivo. Here, we illustrate the use of an ultrasensitive caspase reporter, CaspaseTracker, which permanently labels cells that have experienced caspase activity in whole animals. This in vivo dual color CaspaseTracker biosensor for Drosophila melanogaster transiently expresses red fluorescent protein (RFP) to indicate recent or on-going caspase activity, and permanently expresses green fluorescent protein (GFP) in cells that have experienced caspase activity at any time in the past yet did not die. Importantly, this caspase-dependent in vivo biosensor readily reveals the presence of non-apoptotic caspase activity in the tissues of organ systems throughout the adult fly. This is demonstrated using whole mount dissections of individual flies to detect biosensor activity in healthy cells throughout the brain, gut, malpighian tubules, cardia, ovary ducts and other tissues. CaspaseTracker detects non-apoptotic caspase activity in long-lived cells, as biosensor activity is detected in adult neurons and in other tissues at least 10 days after caspase activation. This biosensor serves as an important tool to uncover the roles and molecular mechanisms of non-apoptotic caspase activity in live animals.

Introduction

胱天蛋白酶是由天门冬氨酸键后残留许多裂解细胞内蛋白介导的细胞凋亡的半胱氨酸蛋白酶。例如,引发剂胱天蛋白酶激活效应器半胱天冬,derepress的DNA核酸酶,裂开细胞骨架元件和改变细胞膜的脂质组合物迅速拆除细胞和由邻近该处置细胞尸体细胞刺激它们的识别和吞噬1-4据估计数十亿的细胞每天死于在人体内,与细胞凋亡是化疗诱发的肿瘤细胞死亡的一个重要机制。5一组不同胱天蛋白酶可以通过不同的非凋亡进程会导致细胞死亡,刺激先天免疫6因此,对半胱天冬大多数研究都集中在其促死亡功能。

有趣的是,在该领域早期证据表明,负责促进细胞死亡同一半胱氨酸蛋白酶也具有非死亡˚Functions。先驱研究表明,胱天蛋白酶涉及健康细胞不同的细胞功能,包括细胞增殖和迁移的胚胎发育过程中的调节。7-9胱天蛋白酶所需的精子细胞个体在果蝇 10,11,用于阻断的替代necroptotic细胞死亡途径小鼠12,13,和用于微RNA加工中C.线虫 14,15在或许是最长寿的细胞,神经元,半胱天冬等凋亡机制在神经元活动的调节通过修剪突触末梢牵连,认为过程是必须加强其他突触学习和记忆。16 18这是可能的半胱氨酸蛋白酶促进由类型没有全细胞死亡微小神经突起的小细胞凋亡的突触修剪。19然而,胱天蛋白酶可具有无关的替代功能凋亡样的事件。20,21双重作用在生活中和死亡不是唯一的胱天蛋白酶; BCL-2家族的蛋白和细胞色素C在健康细胞的细胞能量学的作用,但也芯凋亡途径是受许多类型的细胞应激的激活的一部分。22-25尽管没有证明,逻辑上似乎进化联天 – 工作在同一分子内死亡的作业,以确保不适宜或不良细胞及时消除。

目前,非凋亡胱天蛋白酶活性的分子机制尚不了解,和非凋亡胱天蛋白酶活性的胚胎发育过程中和在成体组织中的程度也没有已知的。一个主要挑战是从半胱氨酸蛋白酶的死亡区分工作一天工作的难度。在对比凋亡和pyroptosis,当caspase活性是由一种蛋白水解级联放大,胱天蛋白酶的天作业,预计通过许多可用TECHN发生在低得多的水平的酶活性,可能低于检测ologies。

在此之前这里介绍的工作,其他人开发出了多种生物传感器的caspase为不同的目的。该生物传感器SCAT( 例如 ,ECFP-DEVD金星)使用快速检测FRET实时caspase活性在培养细胞和动物组织。26,27经蛋白酶裂解,Apoliner(mCD8-RFP-DQVD-核针对性GFP部分nucGFP)发生时,其细胞膜系绳是由半胱天冬裂解分钟内的亚细胞重新定位。28同样,ApoAlert-pCaspase3传感器(NES-DEVD-YFP-NLS)从胞浆到在蛋白酶裂解细胞核relocalizes。29,30更多最近,在iCasper生色被巧妙地设计的,当由胱天蛋白酶主要在发育性细胞死亡关联裂解,允许生物传感器的活性检测在实时在果蝇胚胎神经元,但发荧光。嗅觉神经元的31胱天蛋白酶依赖的死亡过程中老化demonst通过每次收看生物传感器( 例如,mCD8-PARP-金星)的胱天蛋白酶切割形式的免疫检测评分,32,33重要的是,在不存在的细胞死亡中的棘检测由敏感免疫染色的caspase-3的活化形式培养的神经元,并在使用核CellEvent报告染料的胱天蛋白酶依赖的荧光,但困难遇到由于光毒性,虽然细胞死亡被推迟,直到脊柱消除后的体细胞。19因此,需要新的胱天蛋白酶的生物传感器,以检测和跟踪与体内基底caspase活性的细胞。

为了克服这些困难,我们产生了新的双色蛋白酶的生物传感器,指定CaspaseTracker。这一策略结合果蝇胱天蛋白酶敏感Apoliner生物传感器28果蝇的G-TRACE FRT重组酶系统34的修改版本以永久标记和跟踪细胞在体内 。<SUP> 35 Gal4的激活的G-TRACE系统允许胱天蛋白酶的非常低的水平,以激活CaspaseTracker,导致RFP的表达在已经历过caspase活性的任何细胞的细胞质和永久核靶向GFP的表达。35该系统可标记细胞在整个使用果蝇 ,对胱天蛋白酶和细胞死亡研究的易于处理的和广泛使用的模型系统整体动物的生命。36-38

Protocol

1. CaspaseTracker苍蝇的制备为了准备CaspaseTracker(DQVD)为飞行实验,执行此交叉:UBI-CaspaseTracker×g的-TRACE(UAS-RFP; UAS-FLP;育碧>停止> GFP-NLS),转增7-10处女女(或男性)通过泛素启动子35一起苍蝇携带的caspase生物传感器基底mCD8-DIAP1-Gal4的驱动具有相同数目的男性(或女性)的G-TRACE苍蝇,其具有第二染色体CYO平衡器避免G-的纯合组合的杀伤力TRACE(UAS-RFP,UAS-FLP和育碧&g…

Representative Results

有允许CaspaseTracker检测正常健康的细胞( 图1a)caspase活性的两个关键部件。的第一个是对胱天蛋白酶的生物传感器Apoliner( 图1b)建模的146个氨基酸的caspase-裂解多肽。28,该多肽被从包含被凋亡过程中典型地切割的单一天然存在的半胱天冬站点DIAP1(细胞凋亡的果蝇抑制剂)衍生由胱天蛋白酶DrICE。42,43 DrICE相当于胱天蛋白?…

Discussion

在这里,我们说明CaspaseTracker的建设和内部运作促进健康组织的广泛基础caspase活性的检测。 用于体内检测非凋亡胱天蛋白酶活性的关键步骤是:1)产生苍蝇与生物传感器的转基因,2)验证与适当的控制的具体的caspase-记者功能,3)练解剖技术观察成年果蝇的所有内部器官系统,和4)从自体荧光的工件识别生物传感器的活性。

在作为具体的caspase-传感器天然蛋?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢拾破烂桑托斯和达伦Obbard在图果蝇插图。 2A,马塞洛雅各布 – 洛雷纳使用的JHMRI昆虫饲养的。这项工作是由生命科学研究基金会奖学金(HLT)的支持下,大学教育资助委员会,香港的AoE / B-07/99(MCF),和NIH授予NS096677,NS037402和NS083373(江铃控股)。何林堂是生命科学研究基金会的Shurl和凯库尔奇基金会研究员。

Materials

CONSUMABLES AND REAGENTS
Vectashield Vector Products H-1000 Mounting medium
Forceps Ted Pella #505 (110mm, #5) Dumont tweezer biology grade, stainless steel
Hanging Drop Slides Fisher Scientific 12-565B Glass slides
Hoechst 33342 Molecular Probes H1399 DNA stain
Alexa Fluor 633 Phalloidin Molecular Probes A22284 Actin stain
Rat-Elav-7E8A10 anti-elav antibody  Developmental Studies Hybridoma Bank (DSHB) Antibody Registry ID:  AB_528218  Stain for Drosophla pan-neuronal ELAV
Cleaved caspase-3 (Asp175) antibody Cell Signaling Technology #9661 Stain for active fragment of caspase-3
ProLong Gold antifade reagent Life Technologies P36934 to preserve fluorophores 
ProLong Diamond Antifade Mountant Life Technologies P36961 to preserve fluorophores 
SylGard 182 Silicone Elastomer Kit Dow Corning  Product code: 0001023934 for dissection plates
EQUIPMENT
LSM780 confocal microscope Carl Zeiss N/A Imaging
Carl Zeiss Stereomicroscope Stemi 2000  Carl Zeiss N/A Drosophila dissection
AmScope Fiber Optic Dual Gooseneck Microscope Illuminator, 150W AmScope WBM99316  Light source

References

  1. Salvesen, G. S., Abrams, J. M. Caspase activation – stepping on the gas or releasing the brakes? Lessons from humans and flies. Oncogene. 23, 2774-2784 (2004).
  2. Hay, B. A., Guo, M. Caspase-dependent cell death in Drosophila. Annu Rev Cell Dev Biol. 22, 623-650 (2006).
  3. Segawa, K., et al. Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure. Science. 344, 1164-1168 (2014).
  4. Akagawa, H., et al. The role of the effector caspases drICE and dcp-1 for cell death and corpse clearance in the developing optic lobe in Drosophila. Dev Biol. , (2015).
  5. Souers, A. J., et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 19, 202-208 (2013).
  6. Lamkanfi, M., Dixit, V. M. Mechanisms and functions of inflammasomes. Cell. 157, 1013-1022 (2014).
  7. Bergmann, A., Steller, H. Apoptosis, stem cells, and tissue regeneration. Sci Signal. 3, re8 (2010).
  8. Hyman, B. T., Yuan, J. Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nat Rev Neurosci. 13, 395-406 (2012).
  9. Juraver-Geslin, H. A., Durand, B. C. Early development of the neural plate: new roles for apoptosis and for one of its main effectors caspase-3. Genesis. 53, 203-224 (2015).
  10. Arama, E., Agapite, J., Steller, H. Caspase activity and a specific cytochrome C are required for sperm differentiation in Drosophila. Dev Cell. 4, 687-697 (2003).
  11. Kaplan, Y., Gibbs-Bar, L., Kalifa, Y., Feinstein-Rotkopf, Y., Arama, E. Gradients of a ubiquitin E3 ligase inhibitor and a caspase inhibitor determine differentiation or death in spermatids. Dev Cell. 19, 160-173 (2010).
  12. Kaiser, W. J., et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature. 471, 368-372 (2011).
  13. Gunther, C., et al. Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature. 477, 335-339 (2011).
  14. Weaver, B. P., et al. CED-3 caspase acts with miRNAs to regulate non-apoptotic gene expression dynamics for robust development in C. elegans. Elife. 3, e04265 (2014).
  15. Ge, X., et al. A novel mechanism underlies caspase-dependent conversion of the dicer ribonuclease into a deoxyribonuclease during apoptosis. Cell Res. 24, 218-232 (2014).
  16. Fannjiang, Y., et al. BAK alters neuronal excitability and can switch from anti- to pro-death function during postnatal development. Dev Cell. 4, 575-585 (2003).
  17. Ofengeim, D., et al. N-terminally cleaved Bcl-xL mediates ischemia-induced neuronal death. Nat Neurosci. 15, 574-580 (2012).
  18. Li, Z., Sheng, M. Caspases in synaptic plasticity. Mol Brain. 5, 15 (2012).
  19. Erturk, A., Wang, Y., Sheng, M. Local pruning of dendrites and spines by caspase-3-dependent and proteasome-limited mechanisms. J Neurosci. 34, 1672-1688 (2014).
  20. Campbell, D. S., Okamoto, H. Local caspase activation interacts with Slit-Robo signaling to restrict axonal arborization. J Cell Biol. 203, 657-672 (2013).
  21. Feinstein-Rotkopf, Y., Arama, E. Can’t live without them, can live with them: roles of caspases during vital cellular processes. Apoptosis. 14, 980-995 (2009).
  22. Li, P., et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 91, 479-489 (1997).
  23. Lewis, J., et al. Inhibition of virus-induced neuronal apoptosis by Bax. Nat Med. 5, 832-835 (1999).
  24. Chen, Y. B., et al. Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential. J Cell Biol. 195, 263-276 (2011).
  25. Yi, C. H., et al. Metabolic regulation of protein N-alpha-acetylation by Bcl-xL promotes cell survival. Cell. 146, 607-620 (2011).
  26. Takemoto, K., Nagai, T., Miyawaki, A., Miura, M. Spatio-temporal activation of caspase revealed by indicator that is insensitive to environmental effects. J Cell Biol. 160, 235-243 (2003).
  27. Takemoto, K., et al. Local initiation of caspase activation in Drosophila salivary gland programmed cell death in vivo. Proc Natl Acad Sci U S A. 104, 13367-13372 (2007).
  28. Bardet, P. L., et al. A fluorescent reporter of caspase activity for live imaging. Proc Natl Acad Sci U S A. 105, 13901-13905 (2008).
  29. Tang, H. L., et al. Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response. Mol Biol Cell. 23, 2240-2252 (2012).
  30. Golbs, A., Nimmervoll, B., Sun, J. J., Sava, I. E., Luhmann, H. J. Control of programmed cell death by distinct electrical activity patterns. Cereb Cortex. 21, 1192-1202 (2011).
  31. To, T. L., et al. Rationally designed fluorogenic protease reporter visualizes spatiotemporal dynamics of apoptosis in vivo. Proc Natl Acad Sci U S A. 112, 3338-3343 (2015).
  32. Florentin, A., Arama, E. Caspase levels and execution efficiencies determine the apoptotic potential of the cell. J Cell Biol. 196, 513-527 (2012).
  33. Chihara, T., et al. Caspase inhibition in select olfactory neurons restores innate attraction behavior in aged Drosophila. PLoS Genet. 10, e1004437 (2014).
  34. Evans, C. J., et al. G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila. Nat Methods. 6, 603-605 (2009).
  35. Tang, H. L., Tang, H. M., Fung, M. C., Hardwick, J. M. In vivo CaspaseTracker biosensor system for detecting anastasis and non-apoptotic caspase activity. Sci Rep. 5, 9015 (2015).
  36. Suzanne, M., Steller, H. Shaping organisms with apoptosis. Cell Death Differ. 20, 669-675 (2013).
  37. Jenkins, V. K., Timmons, A. K., McCall, K. Diversity of cell death pathways: insight from the fly ovary. Trends Cell Biol. 23, 567-574 (2013).
  38. Sarkissian, T., Timmons, A., Arya, R., Abdelwahid, E., White, K. Detecting apoptosis in Drosophila tissues and cells. Methods. 68, 89-96 (2014).
  39. Williamson, W. R., Hiesinger, P. R. Preparation of developing and adult Drosophila brains and retinae for live imaging. J Vis Exp. , (2010).
  40. Wong, L. C., Schedl, P. Dissection of Drosophila ovaries. J Vis Exp. , e52 (2006).
  41. Tauc, H. M., Tasdogan, A., Pandur, P. Isolating intestinal stem cells from adult Drosophila midguts by FACS to study stem cell behavior during aging. J Vis Exp. , e52223 (2014).
  42. Ditzel, M., et al. Degradation of DIAP1 by the N-end rule pathway is essential for regulating apoptosis. Nat Cell Biol. 5, 467-473 (2003).
  43. Li, X., Wang, J., Shi, Y. Structural mechanisms of DIAP1 auto-inhibition and DIAP1-mediated inhibition of drICE. Nat Commun. 2, 408 (2011).
  44. Yi, S. X., Moore, C. W., Lee, R. E. Rapid cold-hardening protects Drosophila melanogaster from cold-induced apoptosis. Apoptosis. 12, 1183-1193 (2007).
  45. Drummond-Barbosa, D., Spradling, A. C. Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev Biol. 231, 265-278 (2001).
  46. Fan, Y., Bergmann, A. The cleaved-Caspase-3 antibody is a marker of Caspase-9-like DRONC activity in Drosophila. Cell Death Differ. 17, 534-539 (2010).
  47. Fogarty, C. E., Bergmann, A. Detecting caspase activity in Drosophila larval imaginal discs. Methods Mol Biol. 1133, 109-117 (2014).
  48. Koushika, S. P., Lisbin, M. J., White, K. ELAV, a Drosophila neuron-specific protein, mediates the generation of an alternatively spliced neural protein isoform. Curr Biol. 6, 1634-1641 (1996).
  49. Albeck, J. G., et al. Quantitative analysis of pathways controlling extrinsic apoptosis in single cells. Mol Cell. 30, 11-25 (2008).
  50. Galluzzi, L., et al. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ. 16, 1093-1107 (2009).
  51. Holland, A. J., Cleveland, D. W. Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements. Nat Med. 18, 1630-1638 (2012).
  52. Green, D. R. . Means to an end : apoptosis and other cell death mechanisms. , (2011).
  53. Chau, B. N., et al. Signal-dependent protection from apoptosis in mice expressing caspase-resistant Rb. Nat Cell Biol. 4, 757-765 (2002).
  54. Lin, Y., Devin, A., Rodriguez, Y., Liu, Z. G. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 13, 2514-2526 (1999).
  55. Han, M. H., et al. The novel caspase-3 substrate Gap43 is involved in AMPA receptor endocytosis and long-term depression. Mol Cell Proteomics. 12, 3719-3731 (2013).
  56. Nakagawa, A., Shi, Y., Kage-Nakadai, E., Mitani, S., Xue, D. Caspase-dependent conversion of Dicer ribonuclease into a death-promoting deoxyribonuclease. Science. 328, 327-334 (2010).
check_url/53992?article_type=t

Play Video

Cite This Article
Tang, H. L., Tang, H. M., Fung, M. C., Hardwick, J. M. In Vivo Biosensor Tracks Non-apoptotic Caspase Activity in Drosophila. J. Vis. Exp. (117), e53992, doi:10.3791/53992 (2016).

View Video