Summary

器官空调,媒体和应用的产生对乳腺癌转移行为研究器官特异性的影响

Published: June 13, 2016
doi:

Summary

This manuscript describes an ex vivo model system comprised of organ-conditioned media derived from the lymph node, bone, lung, and brain of mice. This model system can be used to identify and study organ-derived soluble factors and their effects on the organ tropism and metastatic behavior of cancer cells.

Abstract

Breast cancer preferentially metastasizes to the lymph node, bone, lung, brain and liver in breast cancer patients. Previous research efforts have focused on identifying factors inherent to breast cancer cells that are responsible for this observed metastatic pattern (termed organ tropism), however much less is known about factors present within specific organs that contribute to this process. This is in part because of a lack of in vitro model systems that accurately recapitulate the organ microenvironment. To address this, an ex vivo model system has been established that allows for the study of soluble factors present within different organ microenvironments. This model consists of generating conditioned media from organs (lymph node, bone, lung, and brain) isolated from normal athymic nude mice. The model system has been validated by demonstrating that different breast cancer cell lines display cell-line specific and organ-specific malignant behavior in response to organ-conditioned media that corresponds to their in vivo metastatic potential. This model system can be used to identify and evaluate specific organ-derived soluble factors that may play a role in the metastatic behavior of breast and other types of cancer cells, including influences on growth, migration, stem-like behavior, and gene expression, as well as the identification of potential new therapeutic targets for cancer. This is the first ex vivo model system that can be used to study organ-specific metastatic behavior in detail and evaluate the role of specific organ-derived soluble factors in driving the process of cancer metastasis.

Introduction

乳腺癌是女性最常见的癌症和癌症相关死亡1的第二大原因。乳腺癌的死亡率高的主要原因是常规治疗,以减轻和消除转移性疾病的故障;癌症相关死亡的约90%是由于转移2。理解转移级联的分子机制是至关重要的,以有效地早期和晚期乳腺癌治疗剂的开发。

过去的研究已经帮助阐明乳腺癌转移的多步性质以及它是假设,既癌症进展和转移的结果在很大程度上取决于癌细胞和主机环境3之间的相互作用。临床观察表明,许多癌症显示器官趋向性, ,该倾向优先转移到特定organs.In的CAS乳腺癌E,病人的疾病通常传播或转移至5个主要景点,包括骨,肺,淋巴结,肝,脑4-6。许多理论已​​经发展到解释这个过程,但只有少数经受住了时间的考验。尤文转移的理论,在20世纪20年代提出的,假设转移thatthe分布严格,由于机械因素;由此肿瘤细胞通过正常定义生理血流模式整个身体携带并在第一毛细管床简单地阻止他们遇到7。相比之下,斯蒂芬·佩吉特氏1889“种子和土壤”假说认为,额外的分子相互作用负责存活和转移生长,因此癌细胞(“种子”),只能建立自己和产生相应的分子因素proliferatein器官微环境(“土“)8。将近一个世纪之后,伦纳德在韦斯花了此前公布的尸检资料进行了荟萃分析,证实了尤文的预言,在尸检时发现许多转移性肿瘤的转移是否器官取向是由血流模式单独确定,将有望在预期的比例被发现了。然而,在manyinstances有在某些网站,然后会被尤文提出的力学因素9预期形成更少或更多的转移。这些帐户和理论认为特定器官的微环境起到传播模式和多种癌症,包括乳腺癌的随后的生长和存活的关键作用。

过去的研究工作主要集中于肿瘤细胞衍生因子及其在乳腺癌转移10-12观察到的器官向性的贡献,从器官微环境衍生但是很少有研究探讨因素,可能为建立提供了有利的利基乳腺癌转移。这主要归因于在体外研究器官微环境的组件的技术挑战

当前文章描述了一种用于研究淋巴结,骨,肺和大脑对人乳腺癌细胞的转移行为的水溶性组分的影响的综合体外模型系统。通过证明不同乳腺癌细胞系显示响应于器官条件培养基器官特异性细胞系特异性和恶性行为对应于它们的体内转移潜能13以前的研究已经证实该模型的系统。该模型系统可用于识别和评估可在乳房和其他类型的癌细胞,包括生长,迁移影响的转移行为发挥作用器官特异性的可溶性因子,干样行为,以及基因表达,以及鉴定潜在的新的治疗靶点为癌症。这是可以用来详细研究器官特异性转移行为,并评价在驱动癌转移的方法的器官来源的可溶性因子的作用的第一个体外模型系统。

Protocol

所有动物研究均按照加拿大议会关于动物保护的建议进行的,根据受西方大学动物使用小组委员会批准的方案。 1.器官隔离(肺,脑,骨,淋巴结) 制备四种无菌50ml锥形管中(每个器官中分离)含有大约30毫升无菌磷酸盐缓冲盐水(PBS)的。使用电子天平预称PBS中每管。 安乐死6-12周龄小鼠用CO 2吸入。小鼠应中的CO 2室中放置约1 – 2分钟,或直?…

Representative Results

器官条件培养基的产生 器官分离和产生条件培养基的方法的概要图/示意图示于图1,与图2所示的过程的代表性照片图像。应该注意的是,当这个协议是第一下发展,肝被列入在我们的分析,因为它是乳腺癌转移的常见部位。然而,由于大量产生和由肝脏分泌的蛋白酶,它是非常困难的,?…

Discussion

转移是一个复杂的过程,其中一系列的细胞事件最终都是用于组织浸润和远处肿瘤形成4,30,31负责。这里提出的离体模型系统可用于转移进展的两个重要方面研究:癌细胞归巢或迁移到特定器官(“到达那里”)和生长在该机构(“生长在那里”)。先前许多研究都集中在识别与癌细胞本身有助于转移过程相关的关键分子的特性。例如,通过琼Massagué的组所做的工作已经确定肺特异?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by grants from the Canadian Breast Cancer Foundation-Ontario Region, the Canada Foundation for Innovation (No. 13199), and donor support from John and Donna Bristol through the London Health Sciences Foundation (to A.L.A.). Studentship and fellowship support were provided by the Ontario Graduate Scholarship program (Province of Ontario, to G.M.P. and J.E.C.), the Canada Graduate Scholarship-Master’s program (to M.M.P), the Canadian Institutes of Health Research (CIHR)-Strategic Training Program (to M.M.P., G.M.P and J.E.C.) and the Pamela Greenaway-Kohlmeier Translational Breast Cancer Research Unit at the London Regional Cancer Program (to M.M.P., G.M.P., J.E.C. and Y.X.). A.L.A. is supported by a CIHR New Investigator Award and an Early Researcher Award from the Ontario Ministry of Research and Innovation.

Materials

50 ml conical tubes Thermo Scientific (Nunc) 339652 Keep sterile
1X Phosphate-buffered saline ThermoFisher Scientific 10010-023 Keep sterile
Nude mice Harlan Laboratories Hsd:Athymic Nude-Foxn1nu Use at 6-12 weeks of age
Polystyrene foam pad N/A N/A The discarded lid (~4 x 8 inches or larger) of a polystyrene foam shipping container can be used for this purpose. Sterilize by wiping with ethanol.
Forceps Fine Science Tools 11050-10 Keep sterile
Scissors Fine Science Tools 14058-11 Keep sterile
Gauze pads Fisher Scientific 22-246069 Keep sterile
60 mm2 glass petri dishes Sigma-Aldrich CLS7016560 Keep sterile
Scalpel blades Fisher Scientific S95937A Keep sterile
DMEM:F12 Life Technologies 21331-020 Warm in 37 °C water bath before use, keep sterile 
1 x Mito+ Serum Extender BD Biosciences 355006 Referred to as "concentrated mitogen supplement" in the manuscript. Keep sterile
Penicillin-Streptomycin (10,000 U/mL) Life Technologies 15140-122 Keep sterile
Rosewell Park Memorial Institute 1640 (RPMI 1640) Life Technologies 11875-093 Warm in 37 °C water bath before use, keep sterile 
Fetal Bovine Serum Sigma-Aldrich F1051-500ML Keep sterile
Trypsin/EDTA solution ThermoFisher Scientific R-001-100 Warm in 37 °C water bath before use, keep sterile 
6-well tissue culture plates Thermo Scientific (Nunc) 140675 Keep sterile
0.22 μm syringe filters Sigma-Aldrich Z359904 Keep sterile
T75 tissue culture flasks Thermo Scientific (Nunc) 178905 Keep sterile
Transwells Sigma-Aldrich CLS3464 Keep sterile, use for migration assays
Anti-mouse Sca-1 R&D Systems FAB1226P use at 10 µl/106 cells
Anti-mouse CD105 R&D Systems FAB1320P use at 10 µl/106 cells
Anti-mouse CD29 R&D Systems FAB2405P-025 use at 10 µl/106 cells
Anti-mouse CD73 R&D Systems FAB4488P use at 10 µl/106 cells
Anti-mouse CD44 R&D Systems MAB6127-SP use at 0.25 µg/106 cells
Anti-mouse CD45 eBioscience 11-0451-81 use at 5 µl/106 cells
Anti-mouse gp38 eBioscience 12-5381-80 use at 10 µl/106 cells
β-mercaptoethanol  Sigma-Aldrich M6250  Keep sterile
Protein arrays RayBiotech Inc. AAM-BLM-1-2 Use 1 array per media condition (including negative control), in triplicate

References

  1. Siegel, R. L., Miller, K. D., Jemal, A. Cancer statistics, 2015. CA Cancer J Clin. 65 (1), 5-29 (2015).
  2. Fidler, I. J. The organ microenvironment and cancer metastasis. Differentiation. 70 (9-10), 498-505 (2002).
  3. Chambers, A. F., Groom, A. C., MacDonald, I. C. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2 (8), 563-572 (2002).
  4. Kennecke, H., et al. Metastatic behavior of breast cancer subtypes. J Clin Oncol. 28 (20), 3271-3277 (2010).
  5. Nguyen, D. X., Bos, P. D., Massague, J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 9 (4), 274-284 (2009).
  6. Ewing, J. Neoplastic Diseases: A Treatise on Tumors. Am J Med Sci. 176 (2), 278 (1928).
  7. Paget, S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 8 (2), 98-101 (1989).
  8. Weiss, L. Comments on hematogenous metastatic patterns in humans as revealed by autopsy. Clin Exp Metastasis. 10 (3), 191-199 (1992).
  9. Bos, P. D., et al. Genes that mediate breast cancer metastasis to the brain. Nature. 459 (7249), 1005-1009 (2009).
  10. Kang, Y., et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 3 (6), 537-549 (2003).
  11. Minn, A. J., et al. Genes that mediate breast cancer metastasis to lung. Nature. 436 (7050), 518-524 (2005).
  12. Chu, J. E., et al. Lung-Derived Factors Mediate Breast Cancer Cell Migration through CD44 Receptor-Ligand Interactions in a Novel Ex Vivo System for Analysis of Organ-Specific Soluble Proteins. Neoplasia. 16 (2), (2014).
  13. Deepak, S., et al. Real-Time PCR: Revolutionizing Detection and Expression Analysis of Genes. Curr Genomics. 8 (4), 234-251 (2007).
  14. Hammerschmidt, S. I., et al. Stromal mesenteric lymph node cells are essential for the generation of gut-homing T cells in vivo. J Exp Med. 205 (11), 2483-2490 (2008).
  15. Dominici, M., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 8 (4), 315-317 (2006).
  16. Baddoo, M., et al. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem. 89 (6), 1235-1249 (2003).
  17. Furger, K. A., Menon, R. K., Tuck, A. B., Bramwell, V. H., Chambers, A. F. The functional and clinical roles of osteopontin in cancer and metastasis. Curr Mol Med. 1 (5), 621-632 (2001).
  18. Radisky, E. S., Radisky, D. C. Matrix metalloproteinases as breast cancer drivers and therapeutic targets. Front Biosci (Landmark Ed). 20, 1144-1163 (2015).
  19. Radisky, E. S., Radisky, D. C. Matrix metalloproteinase-induced epithelial-mesenchymal transition in breast cancer. J Mammary Gland Biol Neoplasia. 15 (2), 201-212 (2010).
  20. Radisky, E. S., Radisky, D. C. Stromal induction of breast cancer: inflammation and invasion. Rev Endocr Metab Disord. 8 (3), 279-287 (2007).
  21. Kakinuma, T., Hwang, S. T. Chemokines, chemokine receptors, and cancer metastasis. J Leukoc Biol. 79 (4), 639-651 (2006).
  22. Zlotnik, A. Chemokines and cancer. Int J Cancer. 119 (9), 2026-2029 (2006).
  23. Schlesinger, M., Bendas, G. Vascular cell adhesion molecule-1 (VCAM-1)–an increasing insight into its role in tumorigenicity and metastasis. Int J Cancer. 136 (11), 2504-2514 (2015).
  24. Cook, K. L., Shajahan, A. N., Clarke, R. Autophagy and endocrine resistance in breast cancer. Expert Rev Anticancer Ther. 11 (8), 1283-1294 (2011).
  25. Singh, P., Alex, J. M., Bast, F. Insulin receptor (IR) and insulin-like growth factor receptor 1 (IGF-1R) signaling systems: novel treatment strategies for cancer. Med Oncol. 31 (1), 805 (2014).
  26. Lee, S. H., Jeong, D., Han, Y. S., Baek, M. J. Pivotal role of vascular endothelial growth factor pathway in tumor angiogenesis. Ann Surg Treat Res. 89 (1), 1-8 (2015).
  27. Erdmann, R. B., Gartner, J. G., Leonard, W. J., Ellison, C. A. Lack of functional TSLP receptors mitigates Th2 polarization and the establishment and growth of 4T1 primary breast tumours but has different effects on tumour quantities in the lung and brain. Scand J Immunol. 78 (5), 408-418 (2013).
  28. Chambers, A. F., et al. Steps in tumor metastasis: new concepts from intravital videomicroscopy. Cancer Metastasis Rev. 14 (4), 279-301 (1995).
  29. Chiang, A. C., Massague, J. Molecular basis of metastasis. N Engl J Med. 359 (26), 2814-2823 (2008).
  30. Gupta, G. P., et al. Identifying site-specific metastasis genes and functions. Cold Spring Harb Symp Quant Biol. 70, 149-158 (2005).
  31. Frantz, C., Stewart, K. M., Weaver, V. M. The extracellular matrix at a glance. J Cell Sci. 123, 4195-4200 (2010).
  32. Price, A. P., England, K. A., Matson, A. M., Blazar, B. R., Panoskaltsis-Mortari, A. Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng Part A. 16 (8), 2581-2591 (2010).
  33. Bonnans, C., Chou, J., Werb, Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 15 (12), 786-801 (2014).
  34. Hynes, R. O. The extracellular matrix: not just pretty fibrils. Science. 326 (5957), 1216-1219 (2009).
  35. Psaila, B., Lyden, D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer. 9 (4), 285-293 (2009).
  36. Lee, R. H., Oh, J. Y., Choi, H., Bazhanov, N. Therapeutic factors secreted by mesenchymal stromal cells and tissue repair. J Cell Biochem. 112 (11), 3073-3078 (2011).

Play Video

Cite This Article
Piaseczny, M. M., Pio, G. M., Chu, J. E., Xia, Y., Nguyen, K., Goodale, D., Allan, A. Generation of Organ-conditioned Media and Applications for Studying Organ-specific Influences on Breast Cancer Metastatic Behavior. J. Vis. Exp. (112), e54037, doi:10.3791/54037 (2016).

View Video