Summary

一种方法来提高背根神经节的对齐和髓鞘

Published: August 24, 2016
doi:

Summary

This protocol describes the isolation of dorsal root ganglion (DRG) neurons isolated from rats and the culture of DRG neurons on a static pre-stretched cell culture system to enhance axon alignment, with subsequent co-culture of Schwann Cells (SCs) to promote myelination.

Abstract

Axon regeneration is a chaotic process due largely to unorganized axon alignment. Therefore, in order for a sufficient number of regenerated axons to bridge the lesion site, properly organized axonal alignment is required. Since demyelination after nerve injury strongly impairs the conductive capacity of surviving axons, remyelination is critical for successful functioning of regenerated nerves. Previously, we demonstrated that mesenchymal stem cells (MSCs) aligned on a pre-stretch induced anisotropic surface because the cells can sense a larger effective stiffness in the stretched direction than in the perpendicular direction. We also showed that an anisotropic surface arising from a mechanical pre-stretched surface similarly affects alignment, as well as growth and myelination of axons. Here, we provide a detailed protocol for preparing a pre-stretched anisotropic surface, the isolation and culture of dorsal root ganglion (DRG) neurons on a pre-stretched surface, and show the myelination behavior of a co-culture of DRG neurons with Schwann cells (SCs) on a pre-stretched surface.

Introduction

在神经损伤,近端和远端神经断端经常由神经束的直接调整防止由于病灶部位1-2。通常情况下,轴突束是由轴突高度有序的排列和捆绑,形成连通的复杂网络。然而,神经再生是由于缺乏组织轴突3-4对准一个混乱的过程。因此,为了产生足够数量的再生该桥接病灶部位的轴突,有必要以诱导良好的组织轴突对齐。此外,伴随脱髓鞘由于在损伤部位的髓鞘细胞的死亡神经损伤。由于脱髓鞘强烈损害神经轴突尚存的导电能力,靶向治疗脱髓鞘或促进髓鞘是神经损伤后5功能恢复显著。因此,这个协议的目的是为了说明工程方法,解决这两个问题神经再生。

面各向异性,当沿着不同的轴测量,在材料的物理或机械性能被定义为一个差,已经应用影响细胞对准,生长和迁移6-7。除了地形,还有其他的方法来诱导各向异性。先前,我们研究了通过聚二甲基硅氧烷(PDMS)膜的机械静态预拉伸诱导的表面的各向异性。 “强加于大小变形超级”的理论预测,将细胞在拉伸方向感测有效刚度与垂直方向不同,并且在有效刚度这种差异是由于表面各向异性8。间充质干细胞(MSC)上的预拉伸的PDMS膜培养能够通过积极地拉动面,其结果,以感测的各向异性,在预拉伸方向9对齐。同样地,各向异性表面芳从一个机械预拉伸的表面伊辛影响对准,以及生长和髓鞘形成背根神经节的(DRG)轴突10。在这里,我们提供了一个静态预拉伸PDMS基板上诱导表面各向异性以增强轴突再生10的协议。

为了激发轴突对齐,用需要的模式拓扑特征,通过报道排列的纤维和渠道6,11-12提供联系指导,被证明有利于轴突排列11,13。但是,报道了通过拓扑特征,如纤维,频道和图案化诱导轴突对准技术,无法延长并增加轴突的厚度。与此相反,逐步机械拉伸导致更长和更厚的轴突与该拉伸14的幅度增大拉伸方向轴突对齐。然而, 在体内的结合有动力的电机装置不可行。与此相反,静态预拉伸引起的各向异性是不太复杂,并且可以更容易地并入未来支架设计用于体内应用。

在这个协议中,静态预拉伸细胞培养系统用于诱导表面各向异性无拓扑特征。预拉伸培养系统由PDMS膜,可拉伸帧和拉伸阶段,随后该膜被固定到框架和预定的拉伸幅度施加在拉伸阶段。预拉伸表面上培养了21天新鲜分离的DRG神经元中轴突对准和厚度进行监测。接着,雪旺细​​胞(SC)上的对准轴突为髓鞘监测共培养。通过采用预拉伸诱导表面各向异性,我们能够提高MSC和背根神经节9-10,分别对准细胞分化和轴突对齐增长。

Protocol

对于细胞的分离所有的程序是由机构动物护理和使用委员会在密歇根州立大学获得批准。 1.预拉伸各向异性表面的制备混合10:基和固化剂的1溶液,将混合物倒入一个组织培养皿(直径12cm)。用4900毫克碱和490毫克的固化剂的总交联混合物。 保持在真空下的凝胶混合物20分钟以除去气泡。 放置在烘箱中的凝胶混合物过夜固化在60℃下。 的PDMS膜固化之后,使用等离…

Representative Results

预拉伸的细胞培养系统促进DRG轴突对准10。 DRG神经元中培养到预拉伸和未拉伸的表面12天。轴突染色为β-III微管蛋白,以证明其对准。 图2轴突取向后培养12天的预拉伸和未拉伸的PDMS基底进行比较。背根神经节轴突对齐平行于拉伸方向的,而他们表现出随机取向并形成未拉伸的PDMS衬底上的互连网络。 除了?…

Discussion

为了诱导对预拉伸的表面轴突对准,存在两个关键步骤:1)的PDMS膜必须是平坦的和均匀的厚度;和2)的神经胶质细胞,必须从DRG中移除。混合的PDMS和交联剂并在烘箱中固化后,交联的PDMS凝胶应保持在平坦的工作台上,并仔细处理,以免任何倾斜。的PDMS膜的氧等离子处理之后,应当锁相环涂层6小时内,由于表面的等离子体处理后的亲水性(细胞附着必需)衰减随时间。因为在等离子体处理被施?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

笔者想感谢埃里克·瓦斯科对他的援助在PDMS基板的准备,墉王滨海马塔博士在密歇根大学实验室进行有益的建议和DRG隔离的培训博士和马克Tuszynski博士和博士为有益的建议和协议为SC隔离。W.玛丽·坎帕纳在加州大学圣地亚哥分校。这项研究是由美国国家科学基金会(CBET 0941055和CBET 1510895),美国国立卫生研究院(R21CA176854,R01GM089866和R01EB014986)的部分资助。

Materials

Polydimethylsiloxane (PDMS) Dow Corning SYLGARD 184
Neurobasal Medium 1X GibcoBRL 21103-049
B27 Supplement 50X GibcoBRL 17504-044
Glutamax-I 100X GibcoBRL 35050-061
Albumax-I GibcoBRL 11020-021
Nerve Growth Factor-7S Invitrogen 13290-010
Penicillin-streptomycin GibcoBRL 15140-122
0.05% Trypsin-EDTA/1mM EDTA GibcoBRL 25300-054
Poly-L-Lysine Trevigen 3438-100-01
Poly-D-Lysine Sigma p-6407
Fluoro-2 deoxy-uridine Sigma F0503
Uridine Sigma U3003
Hank’s Balanced Salt Solution (HBSS) Invitrogen 14170-112 Isolation Buffer
Type I Collagenase Worthington LS004196
DMEM Gibco 11885
Heat inactivated Fetal Bovine Serum Hyclone SH30080.03
BPE Clonetics CC-4009
Forskolin Calbiochem 344270
Silicone chamber Greiner bio-one FlexiPERM ConA
Plasma cleaning/etching system March Instruments PX-250
Anti-Thy 1.1 antibody Sigma- Aldrich M7898
Rabbit Complement Sigma- Aldrich S-7764
Standard growth medium For 500 ml Neurobasal Medium 1X, add 10 ml of B-27 50X, 5 ml of Glutamax-I 100X,
2.5 ml of Penicillin/Streptomycin (Penn/Strep), 1 ml of Albumax-I, and 1 μl of NGF– 7S (50 ug/ml).
FDU and Uridine stock solution FDU 100mg in 10ml of ddw (10mg/ml), filter in the hood and divided in 500ul aliquots and store at -20 ºC.
Uridine 5g in 166.7ml of ddw (33mg/ml), filter in hood, divide in 200ul aliquots and store at -20 ºC.
Take 61.5ul of FDU (10mg/ml) and 20.5ul of Uridine(33mg/ml), and add 4918ul of ddw to a final stock concentration,
then divide in 1 ml aliquots and store at -20 ºC.

References

  1. Liu, C., et al. . Layer-by-Layer Films for Biomedical Applications. , 525-546 (2015).
  2. Faweett, J. W., Keynes, R. J. Peripheral Nerve Regeneration. Annu Rev Neurosci. 13, 43-60 (1990).
  3. Li, Y., Field, P. M., Raisman, G. Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science. 277, 2000-2002 (1997).
  4. Geller, H. M., Fawcett, J. W. Building a bridge: Engineering spinal cord repair. Exp Neurol. 174, 125-136 (2002).
  5. Totoiu, M. O., Keirstead, H. S. Spinal cord injury is accompanied by chronic progressive demyelination. J Comp Neurol. 486, 373-383 (2005).
  6. Chua, J. S., et al. Extending neurites sense the depth of the underlying topography during neuronal differentiation and contact guidance. Biomaterials. 35, 7750-7761 (2014).
  7. Dowell-Mesfin, N. M., et al. Topographically modified surfaces affect orientation and growth of hippocampal neurons. J Neural Eng. 1, 78-90 (2004).
  8. Baek, S., Gleason, R. L., Rajagopal, K. R., Humphrey, J. D. Theory of small on large: Potential utility in computations of fluid-solid interactions in arteries. Comput Method Appl M. 196, 3070-3078 (2007).
  9. Liu, C., et al. Effect of Static Pre-stretch Induced Surface Anisotropy on Orientation of Mesenchymal Stem Cells. Cell Mol Bioeng. 7, 106-121 (2014).
  10. Liu, C., et al. The impact of pre-stretch induced surface anisotropy on axon regeneration. Tissue Eng Part C Methods. , (2015).
  11. Berns, E. J., et al. Aligned neurite outgrowth and directed cell migration in self-assembled monodomain gels. Biomaterials. 35, 185-195 (2014).
  12. Kidambi, S., Lee, I., Chan, C. Primary neuron/astrocyte co-culture on polyelectrolyte multilayer films: A template for studying astrocyte-mediated oxidative stress in neurons. Adv Funct Mater. 18, 294-301 (2008).
  13. Xia, H., et al. Directed neurite growth of rat dorsal root ganglion neurons and increased colocalization with Schwann cells on aligned poly(methyl methacrylate) electrospun nanofibers. Brain Research. 1565, 18-27 (2014).
  14. Smith, D. H. Stretch growth of integrated axon tracts: Extremes and exploitations. Prog Neurobiol. 89, 231-239 (2009).
  15. Mantuano, E., Jo, M., Gonias, S. L., Campana, W. M. Low Density Lipoprotein Receptor-related Protein (LRP1) Regulates Rac1 and RhoA Reciprocally to Control Schwann Cell Adhesion and Migration. Journal of Biological Chemistry. 285, 14259-14266 (2010).
  16. Kim, B., ET, K. P., Papautsky, I. Long-term stability of plasma oxidized PDMS surfaces. Conf Proc IEEE Eng Med Biol Soc. 7, 5013-5016 (2004).
  17. Lopera, S., Mansano, R. D. Plasma-Based Surface Modification of Polydimethylsiloxane for PDMS-PDMS Molding. ISRN Polymer Science. 2012, (2012).
  18. Chandra, G. . Organosilicon Materials. , (2013).
  19. Wu, M. H. Simple poly(dimethylsiloxane) surface modification to control cell adhesion. Surf Interface Anal. 41, 11-16 (2009).
  20. Moore, M. J., et al. Multiple-channel scaffolds to promote spinal cord axon regeneration. Biomaterials. 27, 419-429 (2006).
  21. Clarke, J. C., et al. Micropatterned methacrylate polymers direct spiral ganglion neurite and Schwann cell growth. Hearing Res. 278, 96-105 (2011).
  22. Pfister, B. J., et al. Development of transplantable nervous tissue constructs comprised of stretch-grown axons. J Neurosci Methods. 153, 95-103 (2006).

Play Video

Cite This Article
Liu, C., Chan, C. An Approach to Enhance Alignment and Myelination of Dorsal Root Ganglion Neurons. J. Vis. Exp. (114), e54085, doi:10.3791/54085 (2016).

View Video