Summary

Measurement of Survival Time in<em> Brachionus</em> Rotifers: Sincronização de condições maternas

Published: July 22, 2016
doi:

Summary

Rotifers are microscopic zooplankton used as models in ecotoxicological and aging studies. Here we provide a protocol for powerful and reproducible measurement of survival time in Brachionus rotifers. Synchronization of culture conditions over several generations is of particular importance because maternal condition affects life history of offspring.

Abstract

Rotifers are microscopic cosmopolitan zooplankton used as models in ecotoxicological and aging studies due to their several advantages such as short lifespan, ease of culture, and parthenogenesis that enables clonal culture. However, caution is required when measuring their survival time as it is affected by maternal age and maternal feeding conditions. Here we provide a protocol for powerful and reproducible measurement of the survival time in Brachionus rotifers following a careful synchronization of culture conditions over several generations. Empirically, poor synchronization results in early mortality and a gradual decrease in survival rate, thus resulting in weak statistical power. Indeed, under such conditions, calorie restriction (CR) failed to significantly extend the lifespan of B. plicatilis although CR-induced longevity has been demonstrated with well-synchronized rotifer samples in past and present studies. This protocol is probably useful for other invertebrate models, including the fruitfly Drosophila melanogaster and the nematode Caenorhabditis elegans, because maternal age effects have also been reported in these species.

Introduction

Rotíferos são microscópicos cosmopolita zooplâncton (<1 mm), que constituem o filo rotifera 1. Eles têm um plano de corpo simples composto por cerca de 1000 células somáticas, bem como um dispositivo de roda-ciliar como característica chamada coroa, que é usado para locomoção e de alimentação. A maioria dos rotíferos pertencem a classes monogononta ou bdelloidea, que contêm cerca de 1.600 e 500 espécies, respectivamente 2. Rotíferos monogononta geralmente têm duas fases reprodução sexuada e assexuada (partenogênese cíclico), enquanto rotíferos bdelloid reproduzir por partenogênese obrigatória 3. É, assim, possível a obtenção de indivíduos geneticamente idênticos rotíferos, o que assegura uma elevada reprodutibilidade em experiências. Além disso, eles têm várias outras vantagens como organismos modelo, tal como um tempo de vida curto, facilidade de cultura, a disponibilidade de dados de sequências genómicas e transcriptomic 4-7, e uma posição filogenética a partir de uma única distanterthropods 8 e nemátodos. Rotíferos são, portanto, prometendo modelos de invertebrados em ecológica, toxicológicas e envelhecimento estudos 9-12.

O tempo de sobrevivência sob a exposição ao stress ambiental ou produtos químicos é um parâmetro frequentemente medida nestes campos de pesquisa 13-19. No entanto, é preciso ter cuidado quando se mede o tempo de sobrevivência de rotíferos porque é suscetível às condições ambientais de suas mães. Ou seja, no monogononta Manjavacas rotíferos Brachionus, descendentes do sexo feminino a partir de mães com idade têm uma vida útil mais curta do que os de mães jovens; no entanto, a restrição calórica materna (CR) compensa parcialmente os efeitos deletérios da avançada idade materna 20. Em B. plicatilis, CR materno proporciona longevidade prole, o tempo de sobrevivência muito tempo sob fome e de resistência ao estresse oxidativo alta associada com a expressão aumentada de enzimas antioxidantes 21,22. O efeito da idade maternaTambém tem sido observado em rotíferos bdelloid 23. Portanto, as condições de rotíferos experimentais devem ser cuidadosamente sincronizada ao longo de várias gerações antes das medições do tempo de sobrevivência.

Aqui nós fornecemos um protocolo para a medição do tempo de sobrevivência em rotíferos Brachionus seguinte sincronização das condições de cultivo ao longo de várias gerações. Jejum intermitente (IF), uma variação do CR onde rotíferos são alimentados periodicamente, foi aplicado para revelar o efeito de sincronização devido aos efeitos conhecidos de SE na longevidade 22,24.

Protocol

1. Preparação de Mídia Nota: Use meio diluída Brujewicz água do mar artificial da salinidade 16,5 ppt (PSU). Outros seawaters artificiais também são frequentemente usados ​​para cultura Brachionus rotíferos 25,26. Adicionar NaCl a 454 mM, 26 mM de MgCl2, 27 mM de MgSO4, 10 mM de KCl e 10 mM de CaCl 2 a 4,5 L de água destilada (volume final será de 5 L). Em alternativa, usar água de diluição desionizada em vez de…

Representative Results

A Figura 1 mostra as curvas de sobrevida representativas de populações mal sincronizados (de duas repetições). Neste experimento, os rotíferos ou eram todos os dias Fed [ad libitum grupo (AL)] ou em dias alternados (IF grupo). A sobrevida média foi de 13 e 18 dias na AL e se os grupos, respectivamente. Embora seja bem sabido que se estende a vida útil do rotíferos, esta experiência não conseguiu detectar uma diferença estatisticamente significat…

Discussion

O actual protocolo descreve um método para medir o tempo de sobrevivência em rotíferos Brachionus. O passo crítico é a sincronização das condições de rotíferos ao longo de várias gerações. Quando rotíferos experimentais são bem sincronizados, um tipo de curva típica I sobrevivência é observada com muito pouco mortalidade precoce como relatado em vários estudos anteriores 18,24,37,38. desvios-padrão de seu tempo de sobrevivência, portanto, tornam-se menores em comparação com rot…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Somos gratos a George Jarvis, Martha Bock, e Bette Hecox-Lea, Laboratório de Biologia Marinha, por sua ajuda na filmagem.

Materials

Sodium chloride Wako 190-13921
Magnesium chloride Wako 136-03995
Magnesium sulfate Wako 131-00427
Potassium chloride Wako 168-22111
Calcium chloride Wako 035-00455
Sodium bicarbonate Wako 199-05985
Sodium bromide Wako 190-01515
Membrane filter (0.45 µm pore size) Millipore HAWP04700
Culture plate, 6-well, non-treated Thomas Scientific 6902D01 Flat bottom
Culture plate, 48-well, non-treated Thomas Scientific 6902D07 Flat bottom
Tetraselmis, Living Carolina Biological Supply Company 152610
PRISM 6 GraphPad Software Version 6.0d

References

  1. Wallace, R. L., Snell, T. W., Ricci, C., Nogrady, T. . Rotifera Vol.1: Biology, ecology and systematics. , (2006).
  2. Segers, H. . Annotated checklist of the rotifers (Phylum Rotifera), with notes on nomenclature, taxonomy and distribution. , (2007).
  3. Mark Welch, D. B., Meselson, M. Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science. 288 (5469), 1211-1215 (2000).
  4. Suga, K., Mark Welch, D., Tanaka, Y., Sakakura, Y., Hagiwara, A. Analysis of expressed sequence tags of the cyclically parthenogenetic rotifer Brachionus plicatilis. PLoS ONE. 2, e671 (2007).
  5. Denekamp, N. Y., et al. Discovering genes associated with dormancy in the monogonont rotifer Brachionus plicatilis. BMC Genomics. 10, 108 (2009).
  6. Lee, J. -. S., et al. Sequence analysis of genomic DNA (680 Mb) by GS-FLX-Titanium sequencer in the monogonont rotifer, Brachionus ibericus. Hydrobiologia. 662 (1), 65-75 (2010).
  7. Flot, J. -. F., et al. Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature. 500 (7463), 453-457 (2013).
  8. Dunn, C. W., et al. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature. 452 (7188), 745-749 (2008).
  9. Yoshinaga, T., Kaneko, G., Kinoshita, S., Tsukamoto, K., Watabe, S. The molecular mechanisms of life history alterations in a rotifer: a novel approach in population dynamics. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 136 (4), 715-722 (2003).
  10. Dahms, H. -. U., Hagiwara, A., Lee, J. -. S. Ecotoxicology, ecophysiology, and mechanistic studies with rotifers. Aquat. Toxicol. 101 (1), 1-12 (2011).
  11. Snell, T. W. Rotifers as models for the biology of aging. Int. Rev. Hydrobiol. 99 (1-2), 84-95 (2014).
  12. Snell, T. W., Johnston, R. K., Gribble, K. E., Mark Welch, D. B. Rotifers as experimental tools for investigating aging. Invertebr. Reprod. Dev. 59, 5-10 (2015).
  13. Kaneko, G., et al. Molecular characterization of Mn-superoxide dismutase and gene expression studies in dietary restricted Brachionus plicatilis rotifers. Hydrobiologia. 546, 117-123 (2005).
  14. Yoshinaga, T., et al. Insulin-like growth factor signaling pathway involved in regulating longevity of rotifers. Hydrobiologia. 546, 347-352 (2005).
  15. Ozaki, Y., Kaneko, G., Yanagawa, Y., Watabe, S. Calorie restriction in the rotifer Brachionus plicatilis enhances hypoxia tolerance in association with the increased mRNA levels of glycolytic enzymes. Hydrobiologia. 649 (1), 267-277 (2010).
  16. Kailasam, M., et al. Effects of calorie restriction on the expression of manganese superoxide dismutase and catalase under oxidative stress conditions in the rotifer Brachionus plicatilis. Fish. Sci. 77 (3), 403-409 (2011).
  17. Garcìa-Garcìa, G., Sarma, S., Núñez-Orti, A. R., Nandini, S. Effects of the mixture of two endocrine disruptors (ethinylestradiol and levonorgestrel) on selected ecological endpoints of Anuraeopsis fissa and Brachionus calyciflorus (Rotifera). Int. Rev. Hydrobiol. 99 (1-2), 166-172 (2014).
  18. Yang, J., Mu, Y., Dong, S., Jiang, Q., Yang, J. Changes in the expression of four heat shock proteins during the aging process in Brachionus calyciflorus (rotifera). Cell Stress Chaperones. 19 (1), 33-52 (2014).
  19. Han, J., et al. Sublethal gamma irradiation affects reproductive impairment and elevates antioxidant enzyme and DNA repair activities in the monogonont rotifer Brachionus koreanus. Aquat. Toxicol. 155, 101-109 (2014).
  20. Gribble, K. E., Jarvis, G., Bock, M., Mark Welch, D. B. Maternal caloric restriction partially rescues the deleterious effects of advanced maternal age on offspring. Aging Cell. 13 (4), 623-630 (2014).
  21. Yoshinaga, T., Hagiwara, A., Tsukamoto, K. Effect of periodical starvation on the survival of offspring in the rotifer Brachionus plicatilis. Fish. Sci. 67 (2), 373-374 (2001).
  22. Kaneko, G., et al. Calorie restriction-induced maternal longevity is transmitted to their daughters in a rotifer. Funct. Ecol. 25 (1), 209-216 (2011).
  23. Lansing, A. I. A transmissible, cumulative, and reversible factor in aging. J. Gerontol. 2 (3), 228-239 (1947).
  24. Yoshinaga, T., Hagiwara, A., Tsukamoto, K. Effect of periodical starvation on the life history of Brachionus plicatilis O. F. Müller (Rotifera): a possible strategy for population stability. J. Exp. Mar. Biol. Ecol. 253 (2), 253-260 (2000).
  25. Gribble, K. E., Kaido, O., Jarvis, G., Mark Welch, D. B. Patterns of intraspecific variability in the response to caloric restriction. Exp. Gerontol. 51, 28-37 (2014).
  26. Snell, T. W., Johnston, R. K. Glycerol extends lifespan of Brachionus manjavacas (Rotifera) and protects against stressors. Exp. Gerontol. 57, 47-56 (2014).
  27. Kim, H. -. J., Hagiwara, A. Effect of female aging on the morphology and hatchability of resting eggs in the rotifer Brachionus plicatilis Müller. Hydrobiologia. 662 (1), 107-111 (2011).
  28. Kim, H. -. J., et al. Light-dependent transcriptional events during resting egg hatching of the rotifer Brachionus manjavacas. Mar. Genomics. 20, 25-31 (2015).
  29. Gribble, K. E., Welch, D. B. M. Life-span extension by caloric restriction is determined by type and level of food reduction and by reproductive mode in Brachionus manjavacas (Rotifera). J. Gerontol. A Biol. Sci. Med. Sci. 68 (4), 349-358 (2013).
  30. Kaneko, G., Kinoshita, S., Yoshinaga, T., Tsukamoto, K., Watabe, S. Changes in expression patterns of stress protein genes during population growth of the rotifer Brachionus plicatilis. Fish. Sci. 68 (6), 1317-1323 (2002).
  31. Kim, H. J., Sawada, C., Hagiwara, A. Behavior and reproduction of the rotifer Brachionus plicatilis species complex under different light wavelengths and intensities. Int. Rev. Hydrobiol. 99 (1-2), 151-156 (2014).
  32. Yoshinaga, T., Hagiwara, A., Tsukamoto, K. Effect of conditioned media on the asexual reproduction of the monogonont rotifer Brachionus plicatilis O. F. Müller. Hydrobiologia. 412, 103-110 (1999).
  33. Ohmori, F., Kaneko, G., Saito, T., Watabe, S. A novel growth-promoting protein in the conditioned media from the rotifer Brachionus plicatilis at an early exponential growth phase. Hydrobiologia. 667 (1), 101-117 (2011).
  34. Collet, D. . Modelling Survival Data in Medical Research. , 151-193 (1993).
  35. Bouliotis, G., Billingham, L. Crossing survival curves: alternatives to the log-rank test. Trials. 12, A137 (2011).
  36. Yang, J., et al. Changes in expression of manganese superoxide dismutase, copper and zinc superoxide dismutase and catalase in Brachionus calyciflorus during the aging process. PloS ONE. 8 (2), e57186 (2013).
  37. Snell, T. W., Johnston, R. K., Rabeneck, B., Zipperer, C., Teat, S. Joint inhibition of TOR and JNK pathways interacts to extend the lifespan of Brachionus manjavacas (Rotifera). Exp. Gerontol. 52, 55-69 (2014).
  38. Klass, M. R. Aging in nematode Caenorhabditis-elegans – major biological and environmental-factors influencing life-span. Mech. Ageing Dev. 6 (6), 413-429 (1977).
  39. Priest, N. K., Mackowiak, B., Promislow, D. E. L. The role of parental age effects on the evolution of aging. Evolution. 56 (5), 927-935 (2002).
check_url/54126?article_type=t

Play Video

Cite This Article
Kaneko, G., Yoshinaga, T., Gribble, K. E., Welch, D. M., Ushio, H. Measurement of Survival Time in Brachionus Rotifers: Synchronization of Maternal Conditions. J. Vis. Exp. (113), e54126, doi:10.3791/54126 (2016).

View Video