Summary

全自动离心微流体装置从全血超灵敏蛋白检测

Published: April 16, 2016
doi:

Summary

This protocol demonstrates how to achieve femto molar detection sensitivity of proteins in 10 µL of whole blood within 30 min. This can be achieved by using electrospun nanofibrous mats integrated in a lab-on-a-disc, which offers high surface area as well as effective mixing and washing for enhanced signal-to-noise ratio.

Abstract

Enzyme-linked immunosorbent assay (ELISA) is a promising method to detect small amount of proteins in biological samples. The devices providing a platform for reduced sample volume and assay time as well as full automation are required for potential use in point-of-care-diagnostics. Recently, we have demonstrated ultrasensitive detection of serum proteins, C-reactive protein (CRP) and cardiac troponin I (cTnI), utilizing a lab-on-a-disc composed of TiO2 nanofibrous (NF) mats. It showed a large dynamic range with femto molar (fM) detection sensitivity, from a small volume of whole blood in 30 min. The device consists of several components for blood separation, metering, mixing, and washing that are automated for improved sensitivity from low sample volumes. Here, in the video demonstration, we show the experimental protocols and know-how for the fabrication of NFs as well as the disc, their integration and the operation in the following order: processes for preparing TiO2 NF mat; transfer-printing of TiO2 NF mat onto the disc; surface modification for immune-reactions, disc assembly and operation; on-disc detection and representative results for immunoassay. Use of this device enables multiplexed analysis with minimal consumption of samples and reagents. Given the advantages, the device should find use in a wide variety of applications, and prove beneficial in facilitating the analysis of low abundant proteins.

Introduction

基于纳米材料的1,2-如纳米线,3纳米颗粒,4纳米管,5和纳米纤维(NFS)6-8疾病诊断多种平台已经制定出来。这些纳米材料提供新技术的设计,由于其独特的物理化学性质高度敏感的生物测定极好的前景。例如,氧化物中孔锌纳米纤维已经被用于乳腺癌的生物标志物的毫微微摩尔灵敏的检测。9最近,基于二氧化钛(TiO 2)已探索生物分析应用10考虑到它们的化学稳定性的纳米材料,11微不足道蛋白质变性,12和生物相容性。13另外, 氧化钛的表面上的羟基基团促进 ​​化学修饰和生物分子的共价连接。14,15图案化 TiO 2 THIN薄膜16或TiO 2纳米管17已被用于通过增加表面积以增强靶蛋白的检测灵敏度;然而,制造工艺是相当复杂的,并且需要昂贵的设备。另一方面,静电会员协会受到关注,因为它们的高表面积以及简单和低成本的制造过程; 18,19然而,该静电 TiO 2的NF垫的易碎或松散特性使得它难以处理和与微流体装置因此集成。6,20,在TiO 2的NF垫中的生物分析应用很少使用,特别是那些需要苛刻的洗涤条件。

在这项研究中,要克服这些限制,我们已经开发出一种新技术,用于通过利用​​一个薄聚二甲基硅氧烷(PDMS)粘合剂层的静电NF垫转印到任何目标衬底的表面上。 Furthermore,我们已经成功地显示出静电 TiO 2的NF垫的整合到由聚碳酸酯(PC)的离心微流体装置。使用这种装置,高敏感的,完全自动化,并集成检测C-反应蛋白(CRP)以及心肌肌钙蛋白I(cTnI水平)溶液在30分钟内从仅10微升的全血21来实现的。由于该组合NFS和离心平台的性能优势,该测定显示出六个数量级的宽动态范围从1微克/毫升(〜8 FM)到100纳克/毫升(〜下午12点08分)与检测的下限0.8微克/毫升(〜6 FM)为CRP和100纳克/毫升(〜4纳米)为37微克/毫升(〜下午1点05分)的检测限的动态范围从10微克/毫升(~0.4 PM) cTnI浓度。这些检测限〜300和〜20倍下相比,他们的相应的常规ELISA结果。这种技术可应用于用于检测任何靶蛋白,用适当的抗体。总体来说,这款设备合作ULD大大有助于在体外诊断和生物化学试验,因为它可以从非常少量的生物样品甚至检测罕见量的靶蛋白具有高度的敏感性; 例如 ,10微升的全血。尽管我们仅展示在这项研究中使用ELISA血清蛋白的检测,静电会员协会与微流体设备的传输和集成技术,可以更广泛地用于需要高检测灵敏度大表面积其他生化反应的应用。

Protocol

注:血从健康个体抽取并收集在一个血液收集管。所有志愿者签署知情同意书。 1. 二氧化钛NF垫的研制 的前体溶液 22 制备 溶解1.5克在乙醇(99.9%,3毫升)和冰醋酸(3毫升)的混合物四异丙醇钛(TTIP),并在磁力搅拌器上在RT(25℃)30分钟的溶液混合。 溶解在3.64克的乙醇(99.9%)聚乙烯基吡咯烷酮(P…

Representative Results

使用该协议,从全血中的高灵敏度制备蛋白质检测一个完全自动化的离心微流体装置。在TiO 2的NF垫由静电和煅烧的方法制备。为了制造所需直径,形态和厚度的NFS,静电如流量,电压,和纺纱的时间条件进行了优化。当条件不优化,形成在NFS的质量很差。特别是,NFS未从在低电压(5千伏)的聚合物溶液纺出,并且当电压为高被打破(> 20千伏)。同样,纺纱时?…

Discussion

TiO 2的NF集成光盘上的检测是存在于血液量非常低低丰度蛋白进行超灵敏检测快速,廉价和方便的技术。该技术具有使用小样品体积(10微升)的优点,并且是适合用于同时多个样品的分析。这提供了巨大的潜力作为一个复用免疫测定装置。该装置具有附加的优点,它不需要像血浆分离,这需要在常规的ELISA样品预处理步骤。此外,该设备可以执行整个免疫测定程序自动地( 例如 ,…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由韩国国家研究基金会(NRF)赠款(2013R1A2A2A05004314,2012R1A1A2043747),来自韩国的健康科技研发项目,卫生部和福利(A121994)和IBS-R020-D1的授予由韩国政府资助的支持。

Materials

Si wafer LG SILTRON Polished Wafer, test grade Dia. (mm) = 150, orientation = <100>, dopant = boron, RES(Ohm-cm) = 1 – 30, thickness (μm) = 650 – 700
Polycarbonate (PC)  Daedong Plastic PCS#6900 Thickness (mm) = 1 and 5 
Titanium tetraisopropoxide, 98%, Sigma-Aldrich 205273
Polyvinylpyrrolidone, Mw = 1,300,000 Sigma-Aldrich 437190
Acetic acid Sigma-Aldrich 320099
Anhydrous ethanol Sigma-Aldrich 459836
Tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-trichlorosilane Sigma-Aldrich 448931
PDMS and curing agent Dow Corning SYLGARD 184
GPDES Gelest Inc SIG5832.0 
Ethanol J T Baker
FE-SEM FEI Nova NanoSEM
X-ray photoelectron spectroscopy ThermoFisher K-alpha
3D modeling machine M&I CNC Lab, Korea CNC milling machine
Wax-dispensing machine Hanra Precision Eng. Co. Ltd., Korea Customized
Double-sided adhesive tape FLEXcon, USA DFM 200 clear 150 POLY H-9 V-95
Cutting plotter Graphtec Corporation, Japan Graphtec CE3000-60 MK2
Spin coater MIDAS SPIN-3000D
Furnace (calcination) R. D. WEBB COMPANY WEBB 99
Rheometer (Tack test) Thermo Scientific Haake MARS III – ORM Package
Oxygen plasma system FEMTO CUTE
Monoclonal mouse antihuman hsCRP Hytest Ltd., Finland 4C28 (clone # C5)
Monoclonal mouse anti-cTnI Hytest Ltd., Finland 4T21 (clone # 19C7)
HRP conjugated goat polyclonal anti-hsCRP Abcam plc., MA ab19175
HRP conjugated mouse monoclonal anti-cTnI Abcam plc., MA ab24460 (clone # 16A11)
hsCRP Abcam plc., MA ab111647
cTnI Fitzgerald, MA 30-AT43
Bovine Albumin Sigma-Aldrich A7906
PBS Amresco Inc E404
Blood collection tubes BD vacutainer 367844 K2 EDTA 7.2 mg plus blood
collection tubes
SuperSignal ELISA femto Invitrogen 37074
Modular multilabel plate reader Perkin Elmer Envision 2104
Disc operating machine Hanra Precision Eng. Co. Ltd., Korea Customized
Photomultiplier tube (PMT) Hamamatsu Photonics H1189-210
AutoCAD AutoDesk Version 2012 Design software
SolidWorks 3D CAD software  SOLIDWORKS Corp. Version 2013 3D Design software,
Edgecam Vero software version 2009.01.06928 Code generating software
DeskCNC Carken Co. version 2.0.2.18 CNC milling machine software

References

  1. Zhang, Y., et al. Nanomaterials for Ultrasensitive Protein Detection. Adv. Mater. 25 (28), 3802-3819 (2013).
  2. Hu, W., Li, C. M. Nanomaterial-based advanced immunoassays. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 3 (2), 119-133 (2011).
  3. Yang-Kyu, C., Chang-Hoon, K. Silicon Nanowire Biosensor for Cancer Markers. Biosensors and Cancer. , 164-183 (2012).
  4. Baltazar, R., Vistas, C. R., Ferreira, G. M. Biosensing Applications Using Nanoparticles. Nanocomposite Particles for Bio-Applications. , 265-282 (2011).
  5. Roy, P., Berger, S., Schmuki, P. TiO2 Nanotubes: Synthesis and Applications. Angew. Chem. Int. Ed. 50 (13), 2904-2939 (2011).
  6. Yang, D., et al. Electrospun Nanofibrous Membranes: A Novel Solid Substrate for Microfluidic Immunoassays for HIV. Adv. Mater. 20 (24), 4770-4775 (2008).
  7. Chantasirichot, S., Ishihara, K. Electrospun phospholipid polymer substrate for enhanced performance in immunoassay system. Biosens. Bioelectron. 38 (1), 209-214 (2012).
  8. Zhang, N., et al. Electrospun TiO2 Nanofiber-Based Cell Capture Assay for Detecting Circulating Tumor Cells from Colorectal and Gastric Cancer Patients. Adv. Mater. 24 (20), 2756-2760 (2012).
  9. Ali, M. A., Mondal, K., Singh, C., Dhar Malhotra, B., Sharma, A. Anti-epidermal growth factor receptor conjugated mesoporous zinc oxide nanofibers for breast cancer diagnostics. Nanoscale. 7 (16), 7234-7245 (2015).
  10. Mondal, K., Ali, M. A., Agrawal, V. V., Malhotra, B. D., Sharma, A. Highly Sensitive Biofunctionalized Mesoporous Electrospun TiO2 Nanofiber Based Interface for Biosensing. ACS Appl. Mater. Interfaces. 6 (4), 2516-2527 (2014).
  11. Tu, W., Dong, Y., Lei, J., Ju, H. Low-Potential Photoelectrochemical Biosensing Using Porphyrin-Functionalized TiO2 Nanoparticles. Anal. Chem. 82 (20), 8711-8716 (2010).
  12. Liu, S., Chen, A. Coadsorption of Horseradish Peroxidase with Thionine on TiO2 Nanotubes for Biosensing. Langmuir. 21 (18), 8409-8413 (2005).
  13. Portan, D. V., Kroustalli, A. A., Deligianni, D. D., Papanicolaou, G. C. On the biocompatibility between TiO2 nanotubes layer and human osteoblasts. J.Biomed.Mater.Res. Part A. 100 (10), 2546-2553 (2012).
  14. Dettin, M., et al. Covalent surface modification of titanium oxide with different adhesive peptides: Surface characterization and osteoblast-like cell adhesion. J. Biomed. Mater. Res. Part A. 90 (1), 35-45 (2009).
  15. Kim, W. -. J., et al. Enhanced Protein Immobilization Efficiency on a TiO2 Surface Modified with a Hydroxyl Functional Group. Langmuir. 25 (19), 11692-11697 (2009).
  16. Son, K. J., Ahn, S. H., Kim, J. H., Koh, W. -. G. Graft Copolymer-Templated Mesoporous TiO2 Films Micropatterned with Poly(ethylene glycol) Hydrogel: Novel Platform for Highly Sensitive Protein Microarrays. ACS Appl. Mater. Interfaces. 3 (2), 573-581 (2011).
  17. Kar, P., Pandey, A., Greer, J. J., Shankar, K. Ultrahigh sensitivity assays for human cardiac troponin I using TiO2 nanotube arrays. Lab Chip. 12 (4), 821-828 (2012).
  18. Agarwal, S., Wendorff, J. H., Greiner, A. Use of electrospinning technique for biomedical applications. Polymer. 49 (26), 5603-5621 (2008).
  19. Ding, B., Wang, M., Wang, X., Yu, J., Sun, G. Electrospun nanomaterials for ultrasensitive sensors. Mater. Today. 13 (11), 16-27 (2010).
  20. Liu, Y., Yang, D., Yu, T., Jiang, X. Incorporation of electrospun nanofibrous PVDF membranes into a microfluidic chip assembled by PDMS and scotch tape for immunoassays. ELECTROPHORESIS. 30 (18), 3269-3275 (2009).
  21. Lee, W. S., Sunkara, V., Han, J. -. R., Park, Y. -. S., Cho, Y. -. K. Electrospun TiO2 nanofiber integrated lab-on-a-disc for ultrasensitive protein detection from whole blood. Lab Chip. 15 (2), 478-485 (2015).
  22. Li, D., Xia, Y. Fabrication of Titania Nanofibers by Electrospinning. Nano Lett. 3 (4), 555-560 (2003).
  23. Lombard, M. . SolidWorks 2013 BIBLE. , (2013).
  24. Tickoo, S. . EdgeCAM 11.0 for Manufacturers. , (2007).
  25. Zhu, R., et al. Improved adhesion of interconnected TiO2 nanofiber network on conductive substrate and its application in polymer photovoltaic devices. Appl. Phys. Lett. 93 (1), 013102 (2008).
  26. Song, M. Y., Ahn, Y. R., Jo, S. M., Kim, D. Y., Ahn, J. -. P. TiO2 single-crystalline nanorod electrode for quasi-solid-state dye-sensitized solar cells. Appl. Phys. Lett. 87 (11), 113113 (2005).
  27. Katsuhiro, O., et al. Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications. Nanotechnology. 17 (4), 1026-1031 (2006).
check_url/54143?article_type=t

Play Video

Cite This Article
Park, Y., Sunkara, V., Kim, Y., Lee, W. S., Han, J., Cho, Y. Fully Automated Centrifugal Microfluidic Device for Ultrasensitive Protein Detection from Whole Blood. J. Vis. Exp. (110), e54143, doi:10.3791/54143 (2016).

View Video