Summary

诱导位点特异性复制遇阻<i>电子。大肠杆菌</i>用荧光阻遏操作员系统

Published: August 21, 2016
doi:

Summary

We describe here a system utilizing a site-specific, reversible in vivo protein block to stall and collapse replication forks in Escherichia coli. The establishment of the replication block is evaluated by fluorescence microscopy and neutral-neutral 2-dimensional agarose gel electrophoresis is used to visualize replication intermediates.

Abstract

障碍物存在于DNA,包括紧密结合的蛋白质和各种病变,会严重抑制细胞的复制机制的进程。一个复制体的失速会导致其分解从染色体,部分或全部,从而导致复制叉的崩溃。从这个崩溃的恢复是细胞准确完整的染色体复制,随后将一个必需品。所发生还原的DNA的叉,并允许复制。因此,当合拢时,细胞已经发展多种机制以高的保真度来完成。先前,在细菌中这些复制修复途径已经使用紫外线的伤害,其具有不被局限于一个已知站点的缺点进行了研究。这份手稿描述了利用荧光阻遏操作员系统(FROS)创建一个特定站点蛋白块,能够引起失速和复制的崩溃FO系统RKS在大肠杆菌 。协议的细节如何复制的状态可在单个活细胞使用荧光显微镜和DNA复制中间体被可视化可以通过2维琼脂糖凝胶电泳进行分析。复制体部件( 例如 DnaBts)的温度敏感突变体可以被合并到系统以诱导复制叉的一个同步崩溃。此外,所涉及的这些过程的重组蛋白质和解旋酶的作用可以使用本系统内的遗传击倒进行研究。

Introduction

在DNA复制,在复制体面临上影响其进程中的DNA的障碍。包括病变和差距DNA损伤以及异常的结构可以防止复制体从出发1。最近,人们已经发现,结合到DNA的蛋白是障碍的最常见的来源,以复制叉级数2。以下用核蛋白块的复制体的遭遇的事件的知识先前已受限于无法在已知位置来诱导在活细胞中的染色体这样的块, 在体外分析已经增强了我们的动力学行为的理解当它满足核蛋白堵塞3,以及复制体本身4,5的机械细节的活性复制体。复制的修复当前的理解通常与紫外线的损伤剂进行研究,并在体内 6-8使用质粒DNA </s了>。虽然可参与DNA修复它遇到的体内核蛋白块通常从这些研究中理解后,是否有由于在复制块中的不同原因的修复途径中的分子事件的变化仍还蛋白待确定。

在这里,我们描述了一个系统,它允许在使用荧光阻遏算系统(FROS)的染色体的特定位置,以建立一个核蛋白块。我们利用大肠杆菌菌株已具有整合到染色体9 240 TETO位点的阵列的大肠杆菌 。阵列内的每个TETO站点有侧翼它通过防止在阵列内的RecA介导的重组,以增加阵列的稳定性有10 bp的随机序列。这个数组,它的变化,原本是用来理解E.大肠杆菌染色体动态10,11但随后适应preveNT 在体内的复制12。阵列已经发现稳定地保持并且当由四面体10,12结合到方框接近复制叉的100%。利用体外的类似LACO阵列已经发现少至22部位为足以阻挡90%的复制,尽管这更短的阵列是体内 13不太有效。为了适应阵列创建核蛋白堵塞,阻遏蛋白必须高度优化的条件下在那里再结合数组来创建一个路障下生产过剩。堵塞的形成,以及随后的释放,可以通过使用荧光显微镜如果使用四环素阻遏的荧光标记的变体进行监测。在每一个细胞复制的状态被看作灶的数字,其中一个焦点是指只有一个数组的副本是细胞内的存在,多灶指示复制活跃的指示。这再次活跃当核蛋白堵塞是通过添加减小四面体的操作员站点的结合亲和力充分的复制体通过阵列进行的无端诱导的逆转褶皱被启用。阻遏蛋白仍然能够结合具有足够高亲和力的DNA阵列的现在的多个拷贝可以被可视化。

在核蛋白堵塞的事件的更复杂的细节可以使用中性中性二维琼脂糖凝胶电泳和Southern杂交14-16被发现。这些技术使得DNA结构在人群的分析。那些在事件过程中形成的,并有可能在复制中间体保持未修理,可以显现。通过改变限制性内切酶和利用探头,中间体可不仅在阵列区域而且上游阵列的当复制叉退化17,18被可视化。该回归需要放置在复制体解离随后;前缘和滞后初生根丝从模板链和退火分离成彼此产生四通的DNA结构(霍利迪交界处)的模板链的同时重新退火。

使用该系统,已经表明,当它遇到该块18中的复制叉并不稳定。此外,可以利用复制体部件的温度敏感的衍生物,以防止一旦倒塌复制叉的再填装。一旦块被建立,该菌株可以转移到非许可温度下,以确保该复制体的同步失活和受控预防重装的。这种温度引起的失活可确保所有人口都折叠在给定时间内的拨叉,并允许当复制体倒塌,该DNA是如何处理的,和需要什么来重新发生什么评估启动DNA复制的过程。

这里描述的系统的一个优点是,核蛋白嵌段是完全可逆的;因此,该细胞的从核蛋白块中恢复的能力能够被遵循。加入无水四环素向细胞将缓解阻遏的紧密结合,使一个复制叉继续通过与细胞重新获得活力。堵塞的溢流可以通过中性中性二维琼脂糖凝胶电泳5分钟后进行可视化,并通过在10分钟内显微镜。此外,可行性分析可以揭示该菌株从复制堵塞恢复并继续增殖的能力。

通过改变在此处所述的实验过程中使用的菌株的遗传背景,对于这种类型的堵塞的修复途径可以阐明。

Protocol

1.阻止复制与FROS 诱导复制遇阻稀释大肠的新鲜过夜培养(为0.17μmKH 2 PO 4,0.72 MK 2 HPO 4 0.1%胰蛋白胨,0.05%酵母提取物,0.1%氯化钠,)用抗生素如需要大肠杆菌菌株携带TETO阵列和PKM1 18至OD 600nm处 = 0.01在稀复合培养基供选择。 注意:不要以供选择添加四环素,因为它不与本系统相兼容。使培养相当于每样?…

Representative Results

所述FROS是诱导型,特定于站点的核蛋白块,使复制中间体在活细胞12,18被可视化。在图1中所示的一般实验设计的用于进行采样的细胞。在遗传背景的采样和变化的定时使该用于研究这样的块的修复一个通用的系统。概略说明了如何对温度敏感的突变体,如dnaB TS和DNAC TS先前已18使用时,可以在该系统中使用。 <p class="jove_content" …

Discussion

During chromosome duplication, the replication machinery will encounter various impediments that prevent its progress. To ensure the entire single-origin chromosome is replicated, bacteria have numerous pathways for repair of the DNA that then enables the replisome to be reloaded20,21. Lesions, single stranded breaks, double stranded breaks and proteins tightly bound to the DNA may each be dealt with using a dedicated pathway, although there is likely to be significant overlap in these pathways. The most commo…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by the Australian Research Council [DP11010246].

Materials

Tryptone Sigma-Aldrich 16922 Growth media component
Sodium Chloride VWR 27810.364 Growth media component
Yeast extract Sigma-Aldrich 92144 Growth media component
Potassium phosphate monobasic Sigma-Aldrich P9791 Growth media component; Potassium buffer component
Potassium phosphate dibasic Sigma-Aldrich P3786 Growth media component; Potassium buffer component
L-Arabinose Sigma-Aldrich A3256 For induction of TetR-YFP production
Anhydrotetracycline hydrochloride Sigma-Aldrich 37919 Release of replication bloackage
Axioskop 2 Fluorescence microscope Zeiss 452310 Visualization of cells
eYFP filter set Chroma Technology 41028 Visualization of YFP
CCD camera Hamamatsu Orca-AG Visualization of cells
MetaMorph  Software (Molecular Devices) SDR Scientific 31282 Version 7.8.0.0 used in the preparation of this manuscript
Agarose Bioline BIO-41025 For agarose plugs and gel electrophoresis
Original Glass Water Repellent (Rain-X) Autobarn DIO1470 For agarose plug manufacture
TRIS VWR VWRC103157P TE, TBE buffer component
Ethylene diaminetetraacetic acid Ajax Finechem AJA180 0.5 M EDTA disodium salt solution adjusted to pH 8.0 with NaOH.
Sodium azide Sigma-Aldrich S2002 Bacteriostatic agent
Hydrochloric acid Sigma-Aldrich 258148 TE buffer component
Sodium deoxycholate Sigma-Aldrich D6750 Cell lysis buffer component
N-Lauroylsarcosine sodium salt (Sarkosyl) Sigma-Aldrich L5125 Cell lysis and ESP buffer component
Rnase A Sigma-Aldrich R6513 Cell lysis buffer component
Lysozyme Amresco 6300 Cell lysis buffer component
Proteinase K Amresco AM0706 ESP buffer component
Sub-Cell Model 192 Cell BioRad 1704507 Electrophoresis system
UV transilluminator 2000 BioRad 1708110 Visualization of DNA
Ethidium Bromide BioRad 1610433 Visualization of DNA
Boric acid VWR PROL20185.360 TBE component
Hybond-XL nylon memrbane Amersham RPN203S Zeta-Probe Memrbane (BioRad 1620159) can also be used
3MM Whatman chromatography paper GE Healthcare Life Sciences 3030690 Southern blotting
HL-2000 Hybrilinker UVP 95-0031-01/02 Crosslinking of DNA and hybridization
Deoxyribonucleic acid from salmon sperm Sigma-Aldrich 31149 Hybridization buffer component
Sodium hydroxide Sigma-Aldrich S5881 Denaturation buffer component
Trisodium citrate dihydrate VWR PROL27833.363 Transfer buffer
Sodium dodecyl sulphate (SDS) Amresco 227 Wash buffer component
Bovine serum albumin Sigma-Aldrich A7906 Hybridization buffer component
Random Hexamer Primers Bioline BIO-38028
Klenow fragment New England BioLabs M0212L
dNTP Set Bioline BIO-39025
Adenosine 5’-triphosphate-32P-ATP PerkinElmer BLU502A
Storage Phosphor Screen GE Healthcare Life Sciences GEHE28-9564-76 BAS-IP MS 3543 E multipurpose standard 35x43cm screen
Typhoon FLA 7000 GE Healthcare Life Sciences 28-9558-09 Visualization of blot
Hybridization bottle UVP 07-0194-02 35 x 300mm

References

  1. Mirkin, E. V., Mirkin, S. M. Replication fork stalling at natural impediments. Microbiol Mol Biol Rev. 71 (1), 13-35 (2007).
  2. Gupta, M. K., et al. Protein-DNA complexes are the primary sources of replication fork pausing in Escherichia coli. Proc Natl Acad Sci U S A. 110 (18), 7252-7257 (2013).
  3. McGlynn, P., Guy, C. P. Replication forks blocked by protein-DNA complexes have limited stability in vitro. J Mol Biol. 381 (2), 249-255 (2008).
  4. Tanner, N. A., et al. Single-molecule studies of fork dynamics in Escherichia coli DNA replication. Nat Struct Mol Biol. 15 (2), 170-176 (2008).
  5. Hamdan, S. M., Loparo, J. J., Takahashi, M., Richardson, C. C., van Oijen, A. M. Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis. Nature. 457 (7227), 336-339 (2009).
  6. Rudolph, C. J., Upton, A. L., Lloyd, R. G. Replication fork stalling and cell cycle arrest in UV-irradiated Escherichia coli. Genes Dev. 21 (6), 668-681 (2007).
  7. Jeiranian, H. A., Courcelle, C. T., Courcelle, J. Inefficient replication reduces RecA-mediated repair of UV-damaged plasmids introduced into competent Escherichia coli. Plasmid. 68 (2), 113-124 (2012).
  8. Le Masson, M., Baharoglu, Z., Michel, B. ruvA and ruvB mutants specifically impaired for replication fork reversal. Mol Microbiol. 70 (2), 537-548 (2008).
  9. Wang, X., Liu, X., Possoz, C., Sherratt, D. J. The two Escherichia coli chromosome arms locate to separate cell halves. Genes Dev. 20 (13), 1727-1731 (2006).
  10. Lau, I. F., et al. Spatial and temporal organization of replicating Escherichia coli chromosomes. Mol Microbiol. 49 (3), 731-743 (2003).
  11. Gordon, G. S., et al. Chromosome and low copy plasmid segregation in E. coli: visual evidence for distinct mechanisms. Cell. 90 (6), 1113-1121 (1997).
  12. Possoz, C., Filipe, S. R., Grainge, I., Sherratt, D. J. Tracking of controlled Escherichia coli replication fork stalling and restart at repressor-bound DNA in vivo. EMBO J. 25 (11), 2596-2604 (2006).
  13. Payne, B. T., et al. Replication fork blockage by transcription factor-DNA complexes in Escherichia coli. Nucleic Acids Res. 34 (18), 5194-5202 (2006).
  14. Brewer, B. J., Fangman, W. L. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell. 51 (3), 463-471 (1987).
  15. Jeiranian, H. A., Schalow, B. J., Courcelle, J. Visualization of UV-induced replication intermediates in E. coli using two-dimensional agarose-gel analysis. J Vis Exp. (46), (2010).
  16. Southern, E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 98 (3), 503-517 (1975).
  17. Courcelle, J., Donaldson, J. R., Chow, K. H., Courcelle, C. T. DNA damage-induced replication fork regression and processing in Escherichia coli. Science. 299 (5609), 1064-1067 (2003).
  18. Mettrick, K. A., Grainge, I. Stability of blocked replication forks in vivo. Nucleic Acids Res. , (2015).
  19. Church, G. M., Gilbert, W. Genomic sequencing. Proc Natl Acad Sci U S A. 81 (7), 1991-1995 (1984).
  20. Michel, B., Grompone, G., Flores, M. J., Bidnenko, V. Multiple pathways process stalled replication forks. Proc Natl Acad Sci U S A. 101 (35), 12783-12788 (2004).
  21. Michel, B., Boubakri, H., Baharoglu, Z., LeMasson, M., Lestini, R. Recombination proteins and rescue of arrested replication forks. DNA Repair (Amst). 6 (7), 967-980 (2007).
  22. Carl, P. L. Escherichia coli mutants with temperature-sensitive synthesis of DNA. Mol Gen Genet. 109 (2), 107-122 (1970).
  23. Nawotka, K. A., Huberman, J. A. Two-dimensional gel electrophoretic method for mapping DNA replicons. Mol Cell Biol. 8 (4), 1408-1413 (1988).
  24. Cole, R. S., Levitan, D., Sinden, R. R. Removal of psoralen interstrand cross-links from DNA of Escherichia coli: mechanism and genetic control. J Mol Biol. 103 (1), 39-59 (1976).

Play Video

Cite This Article
Mettrick, K. A., Lawrence, N., Mason, C., Weaver, G. M., Corocher, T., Grainge, I. Inducing a Site Specific Replication Blockage in E. coli Using a Fluorescent Repressor Operator System. J. Vis. Exp. (114), e54434, doi:10.3791/54434 (2016).

View Video