Summary

在子宫内电途径研究神经元亚群的兴奋性和单细胞连接

Published: February 15, 2017
doi:

Summary

这份手稿规定, 在子宫内电(IUE)用来描述在单细胞水平与荧光标记的神经元兴奋性神经元的结构连接协议。组织学是用于表征树突和轴突突起。在急性切片全细胞记录被用来研究兴奋性。

Abstract

神经系统是由不同的神经元类型的一个巨大的范围。这些神经元亚群的特征在于,其它的特征,其独特的树突形态,其轴突连通的特定的模式,和它们的选择性点火的反应中。负责开发期间分化的这些方面的分子和细胞机制仍然知之甚少。

在这里,我们描述了联合协议标签和表征皮层神经元的结构连接性和兴奋性。在子宫内电(IUE)协议的修改使得神经元人口稀少的标签。这,反过来,使树突和单个神经元,轴突突起的层位置的精确表征,和形态分析的轴突的识别和跟踪。 IUE也可以用来研究在的兴奋性变化野生型(WT),或通过将其与全细胞记录从电脑的急性切片结合遗传修饰的神经元。这两种技术有助于更好地理解的结构和功能连接的耦合和分子机制控制发育过程中的神经元的多样性。这些发育过程对轴突布线,神经元的功能的多样性,以及认知障碍的生物学重要的影响。

Introduction

树突和轴突结构的发展是电路调节在神经系统中的一个重要方面,包括在大脑皮层。它起着多样化神经元亚群的选择性布线过程中起关键作用。若干最近的报告表明,除了连接性,神经元的分子多样性由获取烧成的高度特异性的方式体现出来。然而,机制确定发育过程中不同的神经元亚型的兴奋性和连接性,以及它们的协调程度,仍然知之甚少1,2。

体内损失-和增益的功能分析允许对特定基因的表达水平和其在电路的发展的影响之间的关系的研究。 在子宫内电(IUE)是广泛用于研究的技术在特定神经元群体的兴趣的基因的功能,并研究它们的连接的总体图案。然而,为了确定在活的小鼠轴突和树突皮质层的形态特征,是必不可少的疏标记神经元。一个的Cre重组系统用IUE组合可用于在足够低的密度来标记的神经元的稀疏人口来解析所识别的皮质椎板的各个细胞发出的突起。此方法标记足够数目的每皮质神经元的电脑( 图1)的合理数量的分析之后,得到定量数据。这份手稿提出了连通性等精细分析的方法。它也提供了一个类似的策略来分析,在单独的实验中,通过在绿色荧光蛋白(GFP)进行电流钳记录神经元的电性能-electroporated从急性皮层切片的细胞。这些亲母育酚是通用的,可以适用于WT和转基因动物的神经元的兴奋性和连通性的研究中,以及在其损失和功能增益由附加质粒IUE期间引入神经元。

虽然该协议描述了在胚胎天(E)15.5小鼠的电穿孔,该技术可以在任何年龄E9.5 3和日龄(P)的2 4之间执行。虽然电在早期阶段目标的神经元和丘脑的前体和皮质的深层,后期电痕更多的表层(如 E15.5 IUE目标层II-III神经元)。总之,IUE的具有单细胞形态学分析和电的组合是阐明在神经系统的基本神经元的巨大结构和功能的多样性的分子机制的有用工具。

Protocol

所有动物的程序是由马德里动物护理和使用委员会,共同体符合国家和欧洲法规认可(PROEX一十四分之一百十八; PROEX15分之331)。保持在手术过程中在无菌条件。 1. 在子宫内的电注意:此协议为Iue时从先前已公布的5,6,7更为适合。该原稿描述了一种协议,用于E15.5的IUE的胚胎,…

Representative Results

为了表征在细节和整个开发神经元的形态变化,有必要稀疏标记神经元。一个Cre重组稀释系统允许感兴趣的基因在神经元的人口稀少的表达,因此,只有那些掺入这种酶的神经元表达GFP( 图1A)。使用这种策略,层II-III是针对在E15.5通过IUE标记。 CAG-的DsRed2在1微克/μL,是共电为控制和动物活体识别正面电大脑。重要的是,抗GFP抗体染色后,信号足够强,让他?…

Discussion

这个协议在详细描述了如何标记C75BL / 6小鼠的躯体感觉皮层的神经元,以分析它们的连接和它们的兴奋性。相对于现有的方法,它可视连通的识别方面,如每神经元轴突的分支数,它们的精确地形,和它们的解剖位置。通过改变电极的位置,有可能指定其他神经元群体,如扣带皮层(保持电极和大脑之间的角度相同,但改变磁极的取向)或海马5,并且执行类似实验标记单个神经…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢R.古铁雷斯和A.莫拉莱斯的出色技术援助和洛杉矶魏斯进行编辑。 CGB是由西班牙部:西恩西亚ËINNOVACIÓN(MICINN),FPI-BES-2012-056011资助。这项工作是由来自BBVA基金会和SAF2014-58598-JIN(MINECO)到M.纳瓦雷特的资助,并从拉蒙阿雷塞斯基金会和赠款SAF2014-52119-R和BFU2014-55738-REDT(从MINECO)向基金资助M.涅托。

Materials

pCAG-Cre Addgene 13775
pCALNL-GFP Addgene 13770
pCAG-DsRed2 Addgene 15777
pCAG-GFP Addgene 11150
Fast Green Carl Roth 301.1
EndoFree Plasmid Maxi Kit QIAGEN 12362
Carprofen (Rimadyl) Pfizer GmbH 1615 ESP
Isoflurane (IsoFlo) Abbott (Esteve) 1385 ESP
Ketamine (Imalgene) Merial 2528-ESP
Xylazine (Xilagesic) Calier 0682-ESP
Povidone Iodine Meda 694109.6
Eye Ointment (Lipolac) Angelini 65.277
Hanks' Balanced Salt Solution (HBSS) Gibco by Life Technologies 24020-091
Penicillin-Streptomycin Sigma -Aldrich P4333
Scalpel Handle #3 – 12cm Fine Science Tools 10003-12
Scalpel Blades #10 Fine Science Tools 10010-00
Adson Forceps-Serrated – Straight 12 cm Fine Science Tools 1106-12
Hardened Fine Scissors – Straight   11 cm Fine Science Tools 14090-11
Scissors Mezenbaum-Nelson Curved L=14,5cm Teleflex PO143281
Thin curved tips – Style 7 Dumoxel Dumont 0303-7-PO
Dumont #5 Forceps-Inox Fine Science Tools 11251-20
Mathieu Needle Holder – Serrated Fine Science Tools 12010-14
AutoClip Applier Braintree scientific, Inc ACS APL
9mm AutoClips MikRon Precision, Inc. 205016
Sutures – Polysorb 6-0 Covidien UL-101
Electric Razor  Panasonic ER 240
Borosilicate glass capillaries (100mm, 1.0/0.58 Outer/Inner diameter) Wold Precision Instrument Inc. 1B100F-4
Aspirator tube assemblies for calibrated microcapillary pipettes Sigma -Aldrich A5177-5EA
Gauze (Aposan) Laboratorios Indas, S.A.U. C.N. 482232.8
Cotton Swabs (Star Cott) Albasa
Needle 25G (BD Microlance 3) Becton, Dickinson and Company 300600
Sucrose Sigma -Aldrich S0389
Paraformaldehyde Sigma -Aldrich 158127
OCT Compound Sakura 4583
Tissue Culture Dish 100 x 20 mm Falcon 353003
GFP Tag Polyclonal Antibody Thermo Fisher Scientific A-11122
Secondary Antibody, Alexa Fluor 488 conjugate Thermo Fisher Scientific A-11008
DAPI Sigma-Aldrich D9542 
Fetal Bovine Serum Thermo Fisher Scientific 10270106 
Triton X-100 Sigma-Aldrich X100-500ML
Electroporator ECM 830  BTX Harvard Apparatus 45-0002
Platinum electrodes 650P 7 mm Nepagene CUY650P7
Microscope for Fluorescent Imaging – MZ10F Leica
VIP 3000 Isofluorane Vaporizer Matrx
TCS-SP5 Laser Scanning System Leica
Axiovert 200 Microscope Zeiss
Cryostat – CM 1950 Leica
P-97 Micropette Puller Sutter Instrument Company P-97
Patch clamp analysis softwarw (p-Clamp Clampfit 10.3) Molecular Devices
Acquisition software (MultiClamp 700B Amplifier) Molecular Devices DD1440A
Motorized Micromanipulator + Rotating Base  Sutter Instrument MP-225
Air Table Newport
Miniature Peristaltic Pumps WPI

References

  1. Dehorter, N., et al. Tuning of fast-spiking interneuron properties by an activity-dependent transcriptional switch. Science. 349 (6253), 1216-1220 (2015).
  2. Rodriguez-Tornos, F. M., et al. Cux1 Enables Interhemispheric Connections of Layer II/III Neurons by Regulating Kv1-Dependent Firing. Neuron. 89 (3), 494-506 (2016).
  3. Matsui, A., Yoshida, A. C., Kubota, M., Ogawa, M., Shimogori, T. Mouse in utero electroporation: controlled spatiotemporal gene transfection. J Vis Exp. (54), (2011).
  4. Sonego, M., Zhou, Y., Oudin, M. J., Doherty, P., Lalli, G. In vivo postnatal electroporation and time-lapse imaging of neuroblast migration in mouse acute brain slices. J Vis Exp. (81), (2013).
  5. Baumgart, J., Baumgart, N. Cortex-, Hippocampus-, Thalamus-, Hypothalamus-,Lateral Septal Nucleus- and Striatum-specific In Utero Electroporation in the C57BL/6 Mouse. J Vis Exp. (107), (2016).
  6. Petros, T. J., Rebsam, A., Mason, C. A. In utero and ex vivo electroporation for gene expression in mouse retinal ganglion cells. J Vis Exp. (31), (2009).
  7. Rice, H., Suth, S., Cavanaugh, W., Bai, J., Young-Pearse, T. L. In utero electroporation followed by primary neuronal culture for studying gene function in subset of cortical neurons. J Vis Exp. (44), (2010).
  8. Woodworth, M. B., et al. Ctip1 Regulates the Balance between Specification of Distinct Projection Neuron Subtypes in Deep Cortical Layers. Cell Rep. 15 (5), 999-1012 (2016).
  9. Wickersham, I. R., et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron. 53 (5), 639-647 (2007).
  10. Matsuda, T., Cepko, C. L. Controlled expression of transgenes introduced by in vivo electroporation. Proc Natl Acad Sci U S A. 104 (3), 1027-1032 (2007).
  11. Matsuda, T., Cepko, C. L. Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci U S A. 101 (1), 16-22 (2004).
  12. Saito, T. In vivo electroporation in the embryonic mouse central nervous system. Nat Protoc. 1 (3), 1552-1558 (2006).
  13. Bullmann, T., Arendt, T., Frey, U., Hanashima, C. A transportable, inexpensive electroporator for in utero electroporation. Dev Growth Differ. , (2015).
  14. Miller, M. Maturation of rat visual cortex. I. A quantitative study of Golgi-impregnated pyramidal neurons. J Neurocytol. 10 (5), 859-878 (1981).
  15. Miller, M., Peters, A. Maturation of rat visual cortex. II. A combined Golgi-electron microscope study of pyramidal neurons. J Comp Neurol. 203 (4), 555-573 (1981).
  16. Cubelos, B., et al. Cux-2 controls the proliferation of neuronal intermediate precursors of the cortical subventricular zone. Cereb Cortex. 18 (8), 1758-1770 (2008).
  17. Kang, J. Y., Kawaguchi, D., Wang, L. Optical Control of a Neuronal Protein Using a Genetically Encoded Unnatural Amino Acid in Neurons. J Vis Exp. (109), (2016).
  18. Mathis, D. M., Furman, J. L., Norris, C. M. Preparation of acute hippocampal slices from rats and transgenic mice for the study of synaptic alterations during aging and amyloid pathology. J Vis Exp. (49), (2011).
  19. Maravall, M., Stern, E. A., Svoboda, K. Development of intrinsic properties and excitability of layer 2/3 pyramidal neurons during a critical period for sensory maps in rat barrel cortex. J Neurophysiol. 92 (1), 144-156 (2004).
  20. Karadottir, R., Attwell, D. Combining patch-clamping of cells in brain slices with immunocytochemical labeling to define cell type and developmental stage. Nat Protoc. 1 (4), 1977-1986 (2006).
  21. Sakmann, B., Neher, E. Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol. 46, 455-472 (1984).
  22. Saito, T., Nakatsuji, N. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol. 240 (1), 237-246 (2001).
check_url/55139?article_type=t

Play Video

Cite This Article
Briz, C. G., Navarrete, M., Esteban, J. A., Nieto, M. In Utero Electroporation Approaches to Study the Excitability of Neuronal Subpopulations and Single-cell Connectivity. J. Vis. Exp. (120), e55139, doi:10.3791/55139 (2017).

View Video