Summary

En High-throughput Kompatibel Assay at evaluere Drug Effekt mod makrofag passeres<em> Mycobacterium tuberculosis</em

Published: March 24, 2017
doi:

Summary

New models and assays that would improve the early drug development process for next-generation anti-tuberculosis drugs are highly desirable. Here, we describe a quick, inexpensive, and BSL-2 compatible assay to evaluate drug efficacy against Mycobacterium tuberculosis that can be easily adapted for high-throughput screening.

Abstract

The early drug development process for anti-tuberculosis drugs is hindered by the inefficient translation of compounds with in vitro activity to effectiveness in the clinical setting. This is likely due to a lack of consideration for the physiologically relevant cellular penetration barriers that exist in the infected host. We recently established an alternative infection model that generates large macrophage aggregate structures containing densely packed M. tuberculosis (Mtb) at its core, which was suitable for drug susceptibility testing. This infection model is inexpensive, rapid, and most importantly BSL-2 compatible. Here, we describe the experimental procedures to generate Mtb/macrophage aggregate structures that would produce macrophage-passaged Mtb for drug susceptibility testing. In particular, we demonstrate how this infection system could be directly adapted to the 96-well plate format showing throughput capability for the screening of compound libraries against Mtb. Overall, this assay is a valuable addition to the currently available Mtb drug discovery toolbox due to its simplicity, cost effectiveness, and scalability.

Introduction

Tuberkulose (TB) er fortsat en alvorlig global sundhedstrussel trods af tilgængeligheden af anti-TB kemoterapi i over 40 år 1. Dette skyldes til dels, at kravet om lange behandlingsperioder på over seks måneder ved hjælp af flere lægemiddelkombinationer, hvilket fører til patient manglende overholdelse 2. Fremkomsten af multiresistent tuberkulose i de seneste år har yderligere forværret problemer på et område, hvor vellykket udvikling af klinisk godkendte lægemidler er nærmest ikke-eksisterende 3. Trods omfattende anti-TB lægemiddeludvikling, har kun et enkelt lægemiddel været FDA godkendt til klinisk brug i de sidste 40 år 4. Således er der et akut behov for nye generationer af anti-TB-medicin for at løse dette problem.

Et centralt problem i TB lægemiddelforskning er manglen på vellykket overførsel fra forbindelser med in vitro-aktivitet til effekten i kliniske omgivelser= "xref"> 5, 6, 7. I første omgang blev mål tilgange der anvendes til at screene for anti Mtb lægemidler 5, som har undladt at oversætte til hele bakterieceller. Selv når der anvendes Mtb-celler, er det ofte udført under anvendelse bouillon dyrket kulturer, som ikke nøjagtigt forudsige lægemiddel effektivitet in vivo 8, 9. Disse problemer er blevet anerkendt og lægemiddelscreeningsassays mod makrofager indeholder Mtb eller latent Mtb succes er blevet etableret 8, 10, 11, 12. Men selv disse mere avancerede analyser ikke give tilstrækkelig hensyn til de Indtrængningsbarriererne at narkotika møder i de ikke-vaskulariserede lungelæsioner, og i den nekrotiske foci på stedet for infektion. Ja, Selv for den første linje TB stof rifampicin, har suboptimal dosering sat spørgsmålstegn på grund af utilstrækkelig in vivo væv og cerebral spinalvæske (CSF) penetration 13, 14, 15 samt nedsat effektivitet mod intracellulær Mtb 8, 9. Som sådan, nye modeller og analyser, der ville tage hensyn til disse parametre i den tidlige bly udviklingsprocessen vil utvivlsomt forbedre TB drug discovery indsats.

For at imødekomme dette behov, vi for nylig etableret en billig, hurtig og BSL-2 kompatibel alternativ infektion model for Mtb narkotika effektivitetsforsoegene 16. Denne infektion model produceret tæt pakket Mtb inden for store makrofag aggregerede strukturer, som er gengivet fysiologisk relevante cellulære Indtrængningsbarriererne og genererede makrofag-passage <em> Mtb med en ændret fysiologiske status ligner latent Mtb. Mtb afledt af denne infektion model blev kombineret med resazurin mikrotiteranalyse (REMA) at evaluere lægemiddeleffektivitet, som producerede resultater konsistente med andre intracellulære infektionsmodeller og korrelerede godt med den rapporterede evne af fælles TB-medicin til at opnå høj CSF koncentrationer i forhold til serumkoncentrationer 16.

Her beskriver vi i detaljer generation af Mtb / makrofag samlede strukturer til at producere makrofag-passeret Mtb egnet til resistensbestemmelse hjælp REMA. Især viser vi, hvordan denne infektion system kan tilpasses til en 96-brønds format for kompatibilitet med throughput screening af kandidat anti-TB-medicin.

Protocol

BEMÆRK: Da M. tuberculosis mc 2 6206 er en avirulent stamme 17, 18, kan alle arbejde i denne protokol udføres i en biosikkerhedsniveau 2 facilitet (BSL-2). 1. Kultur Betingelser for Green Fluorescent Protein udtrykker M. tuberculosis mc 2 6206 (Mtb GFP) BEMÆRK: M. tuberculosis H37Rv afledt auxotrof stammen mc 2 6206 (Δ panCD, …

Representative Results

For at bekræfte robustheden af tilpasning denne infektion model til 96-brønds pladeformat, vi her undersøgte lægemiddel modtagelighed Mtb afledt fra vores 96-veltilpasset infektion model overfor rifampicin (RIF) og moxifloxacin (Moxi) ifølge skabelonen angivet i figur 1A. Vi viser, at frembringelsen af Mtb / makrofag aggregatstrukturer nøglen til dette assay kan pålideligt fremstilles i en 96-brønds plade-format (figur 2), hvorv…

Discussion

Her har vi beskrevet detaljeret et alternativ Mtb infektion model velegnet til lægemiddeleffektivitet testning. Denne model tager hensyn til to vigtige faktorer, der bør gives mere hensyn i den tidlige TB lægemiddeludvikling proces: tilstedeværelsen af fysiologisk relevante barrierer for indtrængen narkotika og metaboliske ændringer af Mtb under infektion. Mens vi tidligere har vist fordelene ved vores infektion model og foreslået muligheden for opskalering af infektionen for gennemløb kompatib…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Dr. Frank Wolschendorf for access to the Cytation 3 automated imaging plate reader. This work was funded in part by NIH grant R01-AI104499 to OK. Parts of the work were performed in the UAB CFAR facilities and by the UAB CFAR Flow Cytometry Core/Joint UAB Flow Cytometry Core, which are funded by NIH/NIAID P30 AI027767 and by NIH 5P30 AR048311.

Materials

7H9 BD Difco 271310 Follow manufacturer's recommendations
Middlebrook OADC BD Biosciences 212351
Tyloxapol Sigma T8761 Prepare 20% stock solution in H2O; filter sterilize
D-Pantothenic acid hemicalcium salt Sigma P5710 Prepare 24 mg/ml  stock solution in H2O; filter sterilize
L-leucine MP Biomedicals 194694 Prepare 50 mg/ml  stock solution in H2O; filter sterilize
Hygromycin B EMD Millipore 400051 Prepare 200 mg/ml  stock solution in H2O
Nalgene Square PETG media bottle Thermo Fisher 2019-0030
RPMI 1640 media Hyclone SH30027.01
Fetal Bovine Serum Atlanta Biologicals S12450H
L-glutamine Corning MT25005CI
HEPES Hyclone SH30237.01
Cytation 3 plate reader Biotek Interchangable with any fluorescent plate reader and microscope
Gen5 Software Biotek Recording and analysis of rezasurin coversion
Rifampicin  Fisher Scientific BP2679250 Prepare 10 mg/ml stock solution in H2O
Moxifloxacin Hydrochloride Acros Organics 457960010 Prepare 10 mg/ml stock solution in H2O
Resazurin Sodium Salt Sigma R7017 Prepare 800 μg/mL stock solution in H2O; filter sterilize
Tween-80 Fisher Scientific T164500 Prepare 20% stock solution in H2O; filter sterilize

References

  1. Barry, C. E. Lessons from seven decades of antituberculosis drug discovery. Curr Top Med Chem. 11 (10), 1216-1225 (2011).
  2. Bass, J. B., et al. Treatment of tuberculosis and tuberculosis infection in adults and children. American Thoracic Society and The Centers for Disease Control and Prevention. Am J Respir Crit Care Med. 149 (5), 1359-1374 (1994).
  3. Koul, A., Arnoult, E., Lounis, N., Guillemont, J., Andries, K. The challenge of new drug discovery for tuberculosis. Nature. 469 (7331), 483-490 (2011).
  4. Palomino, J. C., Martin, A. TMC207 becomes bedaquiline, a new anti-TB drug. Future Microbiol. 8 (9), 1071-1080 (2013).
  5. Zuniga, E. S., Early, J., Parish, T. The future for early-stage tuberculosis drug discovery. Future Microbiol. 10 (2), 217-229 (2015).
  6. Evangelopoulos, D., Fonseca, d. a., D, J., Waddell, S. J. Understanding anti-tuberculosis drug efficacy: rethinking bacterial populations and how we model them. Int J Infect Dis. 32, 76-80 (2015).
  7. Ekins, S., et al. Looking back to the future: predicting in vivo efficacy of small molecules versus Mycobacterium tuberculosis. J Chem Inf Model. 54 (4), 1070-1082 (2014).
  8. Christophe, T., et al. High content screening identifies decaprenyl-phosphoribose 2′ epimerase as a target for intracellular antimycobacterial inhibitors. PLoS Pathog. 5 (10), e1000645 (2009).
  9. Hartkoorn, R. C., et al. Differential drug susceptibility of intracellular and extracellular tuberculosis, and the impact of P-glycoprotein. Tuberculosis (Edinb). 87 (3), 248-255 (2007).
  10. Queval, C. J., et al. A microscopic phenotypic assay for the quantification of intracellular mycobacteria adapted for high-throughput/high-content screening. J Vis Exp. (83), e51114 (2014).
  11. Sorrentino, F., et al. Development of an intracellular screen for new compounds able to inhibit Mycobacterium tuberculosis growth in human macrophages. Antimicrob Agents Chemother. 60 (1), (2015).
  12. Sarathy, J., Dartois, V., Dick, T., Gengenbacher, M. Reduced drug uptake in phenotypically resistant nutrient-starved nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother. 57 (4), 1648-1653 (2013).
  13. Dutta, N. K., Karakousis, P. C. Can the duration of tuberculosis treatment be shortened with higher dosages of rifampicin?. Front Microbiol. 6, 1117 (2015).
  14. van Ingen, J., et al. Why Do We Use 600 mg of Rifampicin in Tuberculosis Treatment?. Clin Infect Dis. 52 (9), e194-e199 (2011).
  15. Donald, P. R. Cerebrospinal fluid concentrations of antituberculosis agents in adults and children. Tuberculosis (Edinb). 90 (5), 279-292 (2010).
  16. Schaaf, K., et al. A Macrophage Infection Model to Predict Drug Efficacy Against Mycobacterium Tuberculosis. Assay Drug Dev Technol. 14 (6), 345-354 (2016).
  17. Sampson, S. L., et al. Protection elicited by a double leucine and pantothenate auxotroph of Mycobacterium tuberculosis in guinea pigs. Infect Immun. 72 (5), 3031-3037 (2004).
  18. Jain, P., et al. Specialized transduction designed for precise high-throughput unmarked deletions in Mycobacterium tuberculosis. MBio. 5 (3), e01245-e01214 (2014).
  19. Davis, J. M., Ramakrishnan, L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell. 136 (1), 37-49 (2009).
  20. Collins, L., Franzblau, S. G. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob Agents Chemother. 41 (5), 1004-1009 (1997).
  21. Snewin, V. A., et al. Assessment of immunity to mycobacterial infection with luciferase reporter constructs. Infect Immun. 67 (9), 4586-4593 (1999).
check_url/55453?article_type=t

Play Video

Cite This Article
Schaaf, K., Smith, S. R., Hayley, V., Kutsch, O., Sun, J. A High-throughput Compatible Assay to Evaluate Drug Efficacy against Macrophage Passaged Mycobacterium tuberculosis. J. Vis. Exp. (121), e55453, doi:10.3791/55453 (2017).

View Video