Summary

体外方法比较标的结合和CDC诱导治疗性抗体之间:应用在Biosimilarity分析

Published: May 04, 2017
doi:

Summary

该协议描述了利妥昔单抗的两个关键功能特征的体外比较:靶结合和补体依赖性细胞毒性(CDC)诱导。该方法用于参考利妥昔单抗和利妥昔单抗生物仿制药之间的对侧比较。这些测定可以在生物仿制发展过程中使用或作为其生产中的质量控制。

Abstract

治疗性单克隆抗体(mAb)与治疗不同病理学,包括癌症有关。制药公司开发生物仿制药是一个市场机会,但也是增加药物可及性并减少治疗相关成本的策略。这里详述的方案描述了利多西他单抗在Daudi细胞中的靶标结合和CDC诱导的评估。这两个功能需要抗体的不同结构区域,并且与由利妥昔单抗引起的临床效果相关。协议允许参考利妥昔单抗和市售的利妥昔单抗生物仿制药的对侧比较。评估的产品显示靶结合和CDC诱导的差异,表明存在潜在的物理化学差异,并强调需要分析这些差异在临床环境中的影响。这里报道的方法在体外构成简单且便宜/ em>评估利妥昔单抗生物仿制药活性的模型。因此,它们在生物仿制发展过程中是有用的,也可用于生物仿制品的质量控制。此外,所提出的方法可以外推到其他治疗性mAbs。

Introduction

治疗性抗体是开发用于治疗不同病理学,包括癌症,自身免疫性和慢性疾病,神经系统疾病等的重组单克隆抗体(mAb)。目前,FDA批准了超过40种治疗性单克隆抗体,预计在接下来的几年内将有更多的药物进入市场。

利妥昔单抗是批准用于治疗CD20 + B细胞非霍奇金淋巴瘤(NHL),CD20 +滤泡性NHL,慢性淋巴细胞白血病和类风湿性关节炎2,3的高亲和力嵌合单克隆IgG1抗体。由利妥昔单抗对B细胞过度表达的CD20的识别诱导细胞凋亡;补体激活;和抗体依赖性细胞介导的细胞毒性(ADCC) 3 。该药物的专利于2013年和2016年在欧洲和美国期满, 分别。因此,制药公司全球正在开发的生物仿制药利妥昔单抗。与在其他任何药物用于人类消费,生物仿制药需要监管机构的批准。国际准则指出,对单克隆抗体,biosimilarity应通过比较理化性质,药代动力学,药效,以及新产品的参考4安全证明。

因此,在这样的比较所使用的方法必须评估mAb的结构和功能特征,特别是那些具有临床相关性。为此目的, 在体外测定法显示在体内实验几个优点(在Chapman 等人综述)。5:1) 体外研究是所提出的生物仿制药和参照产品之间的差异更加敏感; ⅱ) 在体内研究必须相关物种,这对于许多单克隆抗体是被执行非人灵长类和iii)由于作用机制,临床前毒理学和参考产品的临床效果是众所周知的,所以与生物仿制药的体内研究可能不提供额外的有用信息。因此,欧盟生物仿制药指南允许候选人基于稳健的体外数据进入临床试验6

在这里,我们提供两个快速,经济和简单的测定,评估使用CD20 +培养细胞的利妥昔单抗的生物活性。这些测定可以作为利妥昔单抗生物仿制药候选物的可比性研究的一部分。

Protocol

通过流式细胞术评价靶标结合 制备生物材料和试剂 制备500mL补充有10%热灭活胎牛血清(H-IFBS)的RPMI培养基。 使用RPMI和75-cm 2培养瓶培养Daudi Burkitt's淋巴瘤(Daudi)细胞和Daudi GFP +细胞。将培养物保持在37℃,5%CO 2加湿气氛中,直到达到6 – 9×10 5个细胞/ mL。 通过在PBS中稀释1/100 H-IFBS制备50 mL染色缓冲液;该缓冲液在2-8℃?…

Representative Results

使用上面描述的协议中,靶结合和参考利妥昔单抗的CDC诱导与产生的生物仿制药利妥昔单抗的和可商购于亚并行进行比较。 在Daudi细胞,两种mAb浓度依赖的方式( 图1D)结合CD20。结合数据的非线性回归显示的0.978和0.848的R 2为参考和利妥昔单抗生物仿制药,分别( 图1E)。浓度 – 响应曲线的统?…

Discussion

治疗性单克隆抗体的专利期限正在促进生物仿制药的开发。因此,需要简单的方法来识别这些产品的临床相关活动的差异。 CD20 +培养细胞用于评估利妥昔单抗的两个关键功能特征:目标结合和CDC诱导。前一种活性需要通过mAb的Fab区域识别CD20,而后者主要取决于Fc区与其互补序列9的相互作用。因此,这些检测提供了一种链接mAbs的结构和功能特征的方法。

<p class="jove_con…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者没有确认。

Materials

RPMI-1640 medium ATCC 30-2001 Modify the culture depending on the cell line
Trypan Blue solution Sigma T8154 0.4%, liquid, sterile-filtered, suitable for cell culture
Daudi Burkitt's Lymphoma Cells ATCC CCL-213 You can modify the cell line depending on the antibody of interest
Fetal bovine serum(FBS) GIBCO 16000-044 You can modify the source of serum depending of requirements of the cell line
Normal Human Serum Complement Quidel A113 It is therefore appropriate for use in biocompatibility experiments including drug development, biomaterials testing and other applications
7AA-D BDPharmigen 559925 You can use broad range of color options, compatible with most instrument configurations for to analyze viability.
PECy5 Mouse Anti-human IgG BDPharmigen 551497 Change fluorochrome depending on the filter and laser of your flow cytometer.
Human IgG Isotype Control ThermoFisher Scientific 07-7102 Change depending to mAb
BDCytofix BDPharmigen 554655 Flow Cytometry Fixation Buffer (1-4% formaldehyde or paraformaldehyde )
PBS pH 7.4 10X (Phosphate buffer saline) GIBCO 70011-044 Phosphatebuffer without Ca2+/Mg2+ [137 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4, 1.46 mM KH2PO4] and endotoxin free.
Cell culture plates 96 well, V-bottom Corning 29442-068 12 x 75 mm round bottom test tubes or 96-well V- or U- bottom microtiter plates
MabThera (Rituximab) Roche Reference product
Rituximab Indian Biosimilar product
15- or 50-mL conical centrifuge tubes Corning 430290 or 430052
Pipette Tips Eppendorf Multiple volume configurations are necessary
Pipettes Eppendorf Adjustable-volume pipettes are necessary
Centrifuge 5430/ 5430R model Eppendorf Refrigerated variable-speed centrifuge (4 to 25 ° C) with speeds ranging from 10 to 30,130 × g
Flow cytometer BD Dickinson BD FACSAria III or other flow cytometer
Olympus optical and light microscope Olympus To quantify and evaluate cell growth
Incubator SANYO Incubatorfor temperature andCO2 control to culture cells
Biological Safety Cabinet CHC BIOLUS Biological safety cabinet that is used to protect the researcher, product and environment.

References

  1. Schimizzi, G. F. Biosimilars from a practicing rheumatologist perspective: An overview. Autoimmun Rev. 15 (9), 911-916 (2016).
  2. Cuello, H. A., et al. Comparability of Antibody-Mediated Cell Killing Activity Between a Proposed Biosimilar RTXM83 and the Originator Rituximab. Bio Drugs. 30 (3), 225-231 (2016).
  3. Iwamoto, N., et al. Validated LC/MS Bioanalysis of Rituximab CDR Peptides Using Nano-surface and Molecular-Orientation Limited (nSMOL) Proteolysis. Biol Pharm Bull. 39 (7), 1187-1194 (2016).
  4. Chapman, K., et al. Waiving in vivo studies for monoclonal antibody biosimilar development: National and global challenges. MAbs. 8 (3), 427-435 (2016).
  5. Zembruski, N. C., et al. 7-Aminoactinomycin D for apoptosis staining in flow cytometry. Anal Biochem. 429 (1), 79-81 (2012).
  6. Salinas-Jazmin, N., Hisaki-Itaya, E., Velasco-Velazquez, M. A. A flow cytometry-based assay for the evaluation of antibody-dependent cell-mediated cytotoxicity (ADCC) in cancer cells. Methods Mol Biol. 1165, 241-252 (2014).
  7. Teeling, J. L., et al. The Biological Activity of Human CD20 Monoclonal Antibodies Is Linked to Unique Epitopes on CD20. J Immunol. 177 (1), 362-371 (2006).
  8. Miranda-Hernandez, M. P., et al. Assessment of physicochemical properties of rituximab related to its immunomodulatory activity. J Immunol Res. 2015, 910763 (2015).
  9. Visser, J., et al. Physicochemical and functional comparability between the proposed biosimilar rituximab GP2013 and originator rituximab. BioDrugs. 27 (5), 495-507 (2013).
  10. Ylera, F., et al. Off-rate screening for selection of high-affinity anti-drug antibodies. Anal Biochem. 441 (2), 208-213 (2013).
  11. Broyer, L., Goetsch, L., Broussas, M. Evaluation of complement-dependent cytotoxicity using ATP measurement and C1q/C4b binding. Methods Mol Biol. 988, 319-329 (2013).
  12. Herbst, R., et al. B-cell depletion in vitro and in vivo with an afucosylated anti-CD19 antibody. J Pharm Exp Ther. 335 (1), 213-222 (2010).
  13. Lazar, G. A., et al. Engineered antibody Fc variants with enhanced effector function. Proc Natl Acad Sci U S A. 103 (11), 4005-4010 (2006).
  14. Winiarska, M., et al. Statins impair antitumor effects of rituximab by inducing conformational changes of CD20. PLoS medicine. 5 (3), e64 (2008).
  15. Zhou, X., Hu, W., Qin, X. The role of complement in the mechanism of action of rituximab for B-cell lymphoma: implications for therapy. Oncologist. 13 (9), 954-966 (2008).
  16. Hayashi, K., et al. Gemcitabine enhances rituximab-mediated complement-dependent cytotoxicity to B cell lymphoma by CD20 upregulation. Cancer Sci. 107 (5), 682-689 (2016).
  17. Mossner, E., et al. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood. 115 (22), 4393-4402 (2010).
  18. Lapalombella, R., et al. A novel Raji-Burkitt’s lymphoma model for preclinical and mechanistic evaluation of CD52-targeted immunotherapeutic agents. Clin Cancer Res. 14 (2), 569-578 (2008).
  19. Mitoma, H., et al. Mechanisms for cytotoxic effects of anti-tumor necrosis factor agents on transmembrane tumor necrosis factor alpha-expressing cells: comparison among infliximab, etanercept, and adalimumab. Arthritis Rheum. 58 (5), 1248-1257 (2008).
  20. Kaymakcalan, Z., et al. Comparisons of affinities, avidities, and complement activation of adalimumab, infliximab, and etanercept in binding to soluble and membrane tumor necrosis factor. Clin Immunol. 131 (2), 308-316 (2009).
  21. Zent, C. S., et al. Direct and complement dependent cytotoxicity in CLL cells from patients with high-risk early-intermediate stage chronic lymphocytic leukemia (CLL) treated with alemtuzumab and rituximab. Leuk Res. 32 (12), 1849-1856 (2008).
  22. Goswami, M. T., et al. Regulation of complement-dependent cytotoxicity by TGF-beta-induced epithelial-mesenchymal transition. Oncogene. 35 (15), 1888-1898 (2016).
  23. Wang, A., et al. Induction of anti-EGFR immune response with mimotopes identified from a phage display peptide library by panitumumab. Oncotarget. , (2016).
  24. Ueda, N., et al. The cytotoxic effects of certolizumab pegol and golimumab mediated by transmembrane tumor necrosis factor alpha. Inflamm Bowel Dis. 19 (6), 1224-1231 (2013).
  25. Nesbitt, A., et al. Mechanism of action of certolizumab pegol (CDP870): in vitro comparison with other anti-tumor necrosis factor alpha agents. Inflamm Bowel Dis. 13 (11), 1323-1332 (2007).
  26. Teeling, J. L., et al. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood. 104 (6), 1793-1800 (2004).
check_url/55542?article_type=t

Play Video

Cite This Article
Salinas-Jazmín, N., González-González, E., Vásquez-Bochm, L. X., Pérez-Tapia, S. M., Velasco-Velázquez, M. A. In Vitro Methods for Comparing Target Binding and CDC Induction Between Therapeutic Antibodies: Applications in Biosimilarity Analysis. J. Vis. Exp. (123), e55542, doi:10.3791/55542 (2017).

View Video