Summary

新生儿鼠耳蜗外科手术技术<em>体外</em>听力研究筛选工具

Published: June 08, 2017
doi:

Summary

该方案的目的是证明新生儿鼠耳蜗外植体的制备,培养,治疗和免疫染色。该技术可用作听力研究中的体外筛选工具。

Abstract

虽然在过去几十年的听力研究方面取得了显着的进步,但仍然没有治疗感觉神经性听力损失(SNHL),这种情况通常涉及损伤或丧失内耳微妙的机械感觉结构。近年来出现了复杂的体外离体测定,能够筛选越来越多的潜在治疗性化合物,同时最大限度地减少资源并加快努力开发SNHL的治疗。虽然某些细胞类型的同源文化在当前的研究中继续发挥重要作用,但许多科学家现在依赖于更复杂的鼠内耳的器官型培养物,也称为耳蜗外植体。内耳中有组织的细胞结构的保存促进耳蜗基础设施的各种成分的原位评估,包括内外毛细胞,螺旋神经节神经元,神经元ites和支持细胞。在这里,我们介绍新生儿鼠耳蜗外植体的制备,培养,治疗和免疫染色。仔细准备这些外植体有助于识别有助于SNHL的机制,并为听力研究界提供宝贵的工具。

Introduction

感觉神经性听力损失(SNHL)反映内耳损伤或上升听觉通路。听力损失是人类最常见的感觉缺陷1 ,疗效尚不存在2 。虽然耳蜗或听觉脑干植入物可以恢复对严重到深刻的SNHL的患者的某种程度的听力,但是由这些装置提供的听力仍然与“自然”听觉非常不同,特别是在理解噪音或听音乐的尝试期间。

虽然毛细胞变性长期以来被认为是创伤性听觉事件( 例如暴露于大声)的主要后果,但越来越多的证据表明,将信息从毛细胞传播到听觉神经的突触至少与声学创伤一样容易3 4,5 </sup > 6 。由于人类听力阈值,目前用于评估听力功能的黄金标准,不预测内耳特异性细胞损伤,需要更精细的工具来尽快检测细胞变性并开始适当的治疗7

听力损失的有希望的药物治疗通常在体外在同质细胞培养物上测试,但是这样的系统不能准确地模拟人工耳蜗的微环境。已知耳蜗细胞分泌影响耳蜗内其他细胞类型的营养因子8,9 ,当Corti 10,11或螺旋神经节神经元(SGN) 12的器官被隔离培养或当时分析分子标记然而, 体外数据验证可能需要的体内研究可能需要大量的资源和时间,这在体外数据验证方面需要大量的资源和时间,这在考虑时尤为重要需要多少努力才能完成和进行听力测试的中耳或圆窗膜注射和随后的人工耳蜗解剖。有效筛选被称为耳蜗外植体的器官型离体培养物中有希望的化合物提供了经济和可靠的替代物14,15,16,17

本文详细介绍了一种用于产生,维护和评估治疗耳蜗外植体的方案。强调了该模型的具体应用,包括其在筛选中的应用的潜在治疗化合物和用于基因治疗的病毒载体的比较评估。 离体外植体方法允许研究人员将给定治疗对原位不同细胞群体的影响视觉化,促进细胞类型特异性机制的鉴定和随后的靶向治疗的改进。

总的来说,这种技术提供了一种离体研究耳蜗的模型,同时保持耳蜗内共存的巨大不同细胞类型之间的重要串扰。

Protocol

研究方案由马萨诸塞州眼科和耳朵的机构动物护理和使用委员会(IACUC)批准。根据世界医学协会道德守则进行实验。 1.准备解剖 准备手术台 使用70%乙醇消毒手术台。 在显微镜旁边放置两个无菌制剂垫。 准备仪器托盘,包括热灭菌的操作剪刀,手术刀手柄,微型刀和镊子(#4##两个)。将仪器托盘和一个50毫米,透明玻璃的玻璃?…

Representative Results

虽然许多协议集中在Corti外植体的器官,但是这种技术试图保留包括SGN在内的整个耳蜗转向的解剖学。这使得研究人员有机会分析给药治疗对神经突和神经元的体细胞除了科尔蒂的器官之外。如本文所述,进行保留部分梗阻的解剖在技术上更具挑战性,而不是仅仅去除皮质的器官。然而,神经突和SGN区域是重要的,因为在应用前庭神经鞘瘤分泌物( 图1 )和细…

Discussion

在进行耳蜗外植体实验之前,研究人员必须完善解剖技术。毛细胞通常在学习曲线早期进行的解剖过程中被破坏,并且其完整性的一个特别有问题的时刻是去除胸膜,这需要稳定的手,适当的工具和经验。为了节省时间和资源,应在夹层显微镜下进行视觉控制,并注意潜在的损伤区域。代替使用昂贵的一级和二级抗体,更便宜的试剂如鬼笔环肽更适用于初步实验。在某些实验(分析未受影响的部?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家失聪和其他传播障碍研究所资助的R01DC015824(KMS)和T32DC00038(支持SD),国防部授予W81XWH-15-1-0472(KMS),贝塔雷利基金会(KMS), Nancy Sayles Day基金会(KMS)和Lauer耳鸣研究中心(KMS)。感谢Jessica E. Sagers,BA对稿件的深刻见解。

Materials

Ampicillin, Sodium Salt Invitrogen 11593-027
anti-CtBP2 antibody, mouse(IgG1) BD Transduction Laboratories 612044
anti-Myo7A antibody, rabbit Proteus Biosciences 25-6790
anti-NF-H antibody, chicken EMD Millipore AB5539
anti-PSD95 antibody, mouse(IgG2a) Antibodies Inc. 75-028
anti-TuJ1 antibody, mouse BioLegend 801202
Cell-Tak Cell and Tissue Adhesive, 5 mg Corning 354241
CELLSTAR 15 ml Centrifuge Tubes, Conical bottom, Graduation, Sterile Greiner Bio-One 188161
CELLSTAR Cell Culture Dish, 100×20 mm Greiner Bio-One 664160
CELLSTAR Cell Culture Dish, 35×10 mm, four inner rings Greiner Bio-One 627170
CELLSTAR Cell Culture Dish, 60×15 mm Greiner Bio-One 628160
CELLSTAR 50 ml Centrifuge Tubes, Conical bottom, Graduation, Sterile Greiner Bio-One 227261
Clear Nail Polish Electron Microscopy Sciences 72180
Clear Wall Glass Bottom Dishes (Glass 40mm), PELCO®, Sleeve/20, 50×7 mm Ted Pella Inc. 14027-20
Coverslips, Round, Glass, 10 mm diameter, Thickness #1, 0.13-0.16mm Ted Pella Inc. 260368
DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) Thermo Fisher Scientific D1306
Distilled water, 500 ml Thermo Fisher Scientific 15230-162 
DMEM, high glucose, pyruvate, no glutamine, 500 ml Thermo Fisher Scientific 10313-039
Dumont #4 Forceps Fine Science Tools 11241-30
Dumont #55 Forceps (Dumostar) Fine Science Tools 11295-51
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5% Sigma-Aldrich 459836-1L
Fetal Bovine Serum, qualified, USDA-approved regions, 500 ml Thermo Fisher Scientific 10437-028  Aliquot in 50 ml tubes and store in -20°C freezer
Glutamate – GlutaMAX supplement, 100 ml Thermo Fisher Scientific 35050-061
goat anti-chicken-647 secondary antibody Thermo Fisher Scientific A-21469
goat anti-mouse(IgG)-568 secondary antibody Thermo Fisher Scientific A-11004
goat anti-mouse(IgG1)-568 secondary antibody Thermo Fisher Scientific A-21124
goat anti-mouse(IgG2a)-488 secondary antibody Thermo Fisher Scientific A-21131
goat anti-rabbit-488 secondary antibody Thermo Fisher Scientific R37116
H2O, sterile, EmbryoMax Ultra Pure Water, 500ml EMD Millipore TMS-006-B
HBSS, calcium, magnesium, no phenol red, 500 ml Thermo Fisher Scientific 14025-092
Instrument Tray with Lid Stainless Steel Mountainside Medical TechMed4255
Micro (dissecting) knife – angled 30° Fine Science Tools 10056-12
Microscope slides, VistaVision, color-coded, 75 x 25 mm (3 x 1"), 1 mm thick, white, pack of 72 VWR 16004-382
N-2 Supplement (100X), 5 ml Thermo Fisher Scientific 17502-048
NaHCO3, Sodium Bicarbonate 7.5% solution, 100 ml Thermo Fisher Scientific 25080-094
NaOH, sodium hydroxide solution, 1 l Thermo Fisher Scientific SS266-1
Normal Horse Serum (NHS) Invitrogen 16050130
Operating scissors Roboz Surgical Instruments Co. RS-6806
Paraformaldehyde, Reagent Grade, Crystalline Sigma-Aldrich P6148 Prior to use: Establish Standard Operating Procedures based on protocols available online
PBS, pH 7.4, 500 ml Thermo Fisher Scientific 10010-023  Autoclave prior to use
Phalloidin, Alexa Fluor 568  Thermo Fisher Scientific A12380
Prep Pad, Non Sterile  Medline 05136CS
Safe-Lock Microcentrifuge Tubes, Polypropylene, 0.5 ml Eppendorf 022363719 Autoclave prior to use
Safe-Lock Microcentrifuge Tubes, Polypropylene, 1.5 ml Eppendorf 022363204 Autoclave prior to use
Scalpel Blades – #15 Fine Science Tools 10015-00
Scalpel Handle – #4 Fine Science Tools 10004-13
Stemi 2000-C Stereo Microscope Zeiss  000000-1106-133
TCS SP5 confocal microscope Leica N/A
Triton-X (non-ionic surfactant) Integra T756.30.30
VectaShield antifade mounting medium for fluorescence Vector Laboratories, Inc. H-1000
Zipper Bag, Reclosable, 4'' x 6'' – 2 mil. thick Zipline 0609132541599

References

  1. Geleoc, G. S., Holt, J. R. Sound strategies for hearing restoration). Science. 344 (6184), 1241062 (2014).
  2. Kujawa, S. G., Liberman, M. C. Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth. J Neurosci. 26 (7), 2115-2123 (2006).
  3. Kujawa, S. G., Liberman, M. C. Adding insult to injury: cochlear nerve degeneration after "temporary" noise-induced hearing loss. J Neurosci. 29 (45), 14077-14085 (2009).
  4. Makary, C. A., Shin, J., Kujawa, S. G., Liberman, M. C., Merchant, S. N. Age-related primary cochlear neuronal degeneration in human temporal bones. J Assoc Res Otolaryngol. 12 (6), 711-717 (2011).
  5. Jensen, J. B., Lysaght, A. C., Liberman, M. C., Qvortrup, K., Stankovic, K. M. Immediate and delayed cochlear neuropathy after noise exposure in pubescent mice. PLoS One. 10 (5), (2015).
  6. Landegger, L. D., Psaltis, D., Stankovic, K. M. Human audiometric thresholds do not predict specific cellular damage in the inner ear. Hear Res. , 83-93 (2016).
  7. Wang, H. C., et al. Spontaneous Activity of Cochlear Hair Cells Triggered by Fluid Secretion Mechanism in Adjacent Support Cells. Cell. 163 (6), 1348-1359 (2015).
  8. Barclay, M., Ryan, A. F., Housley, G. D. Type I vs type II spiral ganglion neurons exhibit differential survival and neuritogenesis during cochlear development. Neural Dev. 6, (2011).
  9. Dinh, C., et al. Short interfering RNA against Bax attenuates TNFalpha-induced ototoxicity in rat organ of Corti explants. Otolaryngol Head Neck Surg. 148 (5), 834-840 (2013).
  10. Mazurek, B., Yu, Y., Haupt, H., Szczepek, A. J., Olze, H. Salicylate modulates Hsp70 expression in the explanted organ of Corti. Neurosci Lett. 501 (2), 67-71 (2011).
  11. Kao, S. Y., et al. Loss of osteoprotegerin expression in the inner ear causes degeneration of the cochlear nerve and sensorineural hearing loss. Neurobiol Dis. 56, 25-33 (2013).
  12. Jan, T. A., Chai, R., Sayyid, Z. N., Cheng, A. G. Isolating LacZ-expressing cells from mouse inner ear tissues using flow cytometry. J Vis Exp. (58), e3432 (2011).
  13. Haque, K. D., Pandey, A. K., Kelley, M. W., Puligilla, C. Culture of embryonic mouse cochlear explants and gene transfer by electroporation. J Vis Exp. (95), e52260 (2015).
  14. Parker, M., Brugeaud, A., Edge, A. S. Primary culture and plasmid electroporation of the murine organ of Corti. J Vis Exp. (36), (2010).
  15. Mulvaney, J. F., Dabdoub, A. Long-term time lapse imaging of mouse cochlear explants. J Vis Exp. (93), e52101 (2014).
  16. Wang, Q., Green, S. H. Functional role of neurotrophin-3 in synapse regeneration by spiral ganglion neurons on inner hair cells after excitotoxic trauma in vitro. J Neurosci. 31 (21), 7938-7949 (2011).
  17. Landegger, L. D., et al. A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear. Nat Biotechnol. 35 (3), 280-284 (2017).
  18. Dilwali, S., Landegger, L. D., Soares, V. Y., Deschler, D. G., Stankovic, K. M. Secreted Factors from Human Vestibular Schwannomas Can Cause Cochlear Damage. Sci Rep. 5, 18599 (2015).
  19. Soares, V. Y., et al. Extracellular vesicles derived from human vestibular schwannomas associated with poor hearing damage cochlear cells. Neuro Oncol. , (2016).
  20. Tong, M., Brugeaud, A., Edge, A. S. Regenerated synapses between postnatal hair cells and auditory neurons. J Assoc Res Otolaryngol. 14 (3), 321-329 (2013).
  21. Yuan, Y., et al. Ouabain-induced cochlear nerve degeneration: synaptic loss and plasticity in a mouse model of auditory neuropathy. J Assoc Res Otolaryngol. 15 (1), 31-43 (2014).
  22. Fernandez, K. A., Jeffers, P. W., Lall, K., Liberman, M. C., Kujawa, S. G. Aging after noise exposure: acceleration of cochlear synaptopathy in "recovered" ears. J Neurosci. 35 (19), 7509-7520 (2015).
  23. Barclay, M., Constable, R., James, N. R., Thorne, P. R., Montgomery, J. M. Reduced sensory stimulation alters the molecular make-up of glutamatergic hair cell synapses in the developing cochlea. Neuroscience. , 50-62 (2016).
  24. Zinn, E., et al. In Silico Reconstruction of the Viral Evolutionary Lineage Yields a Potent Gene Therapy Vector. Cell Rep. 12 (6), 1056-1068 (2015).
  25. Wu, Z., Yang, H., Colosi, P. Effect of genome size on AAV vector packaging. Mol Ther. 18 (1), 80-86 (2010).
  26. Shu, Y., et al. Identification of Adeno-Associated Viral Vectors That Target Neonatal and Adult Mammalian Inner Ear Cell Subtypes. Hum Gene Ther. , (2016).
  27. Kao, S. Y., Soares, V. Y., Kristiansen, A. G., Stankovic, K. M. Activation of TRAIL-DR5 pathway promotes sensorineural degeneration in the inner ear. Aging Cell. 15 (2), 301-308 (2016).
check_url/55704?article_type=t

Play Video

Cite This Article
Landegger, L. D., Dilwali, S., Stankovic, K. M. Neonatal Murine Cochlear Explant Technique as an In Vitro Screening Tool in Hearing Research. J. Vis. Exp. (124), e55704, doi:10.3791/55704 (2017).

View Video