Summary

荧光介导的断层扫描对巨噬细胞相关小鼠肠道炎症的检测和定量

Published: December 15, 2017
doi:

Summary

目标特定的探针代表了一种用于分析分子机制的创新工具, 例如各种疾病的蛋白质表达 (例如,炎症、感染和肿瘤发生)。在这项研究中, 我们描述了一个定量的三维层析成像评估肠道巨噬细胞浸润的小鼠结肠炎模型使用 F4/80-specific 荧光介导的断层扫描。

Abstract

小鼠疾病模型对科学研究是必不可少的。然而, 许多诊断工具, 如内窥镜或断层成像, 在动物模型中并不经常使用。传统的实验读数通常依赖于宰后体分析, 从而防止个体的随访检查, 增加所需的研究动物数量。荧光介导的断层扫描使非侵入性的, 重复的, 定量的, 三维荧光探针的评估。它是高度敏感的, 并允许使用分子制造商, 这使得特定的检测和表征明确的分子目标。特别是, 有针对性的探针代表了一个创新的工具, 分析基因活化和蛋白表达在炎症, 自身免疫疾病, 感染, 血管疾病, 细胞迁移, 肿瘤,。在这篇文章中, 我们提供了 step-by 的步骤说明, 对这种复杂的成像技术的在体内检测和定性的炎症 (即, F4/80-positive 巨噬细胞浸润) 在广泛使用的小鼠模型肠道炎症。该技术也可用于其他研究领域, 如免疫细胞或干细胞追踪。

Introduction

动物模型被广泛应用于科学研究, 许多非侵入性的程序都存在于监测疾病的活动和生命力, 如体重变化的量化或血液、尿液和粪便的分析。但是, 这些只是间接的代理参数, 也受个体的可变性。它们必须经常通过对组织标本的验尸分析来补充, 防止在重复的时间点进行连续观察, 并直接观察生理或病理过程在体内。成熟的小动物成像技术已经出现, 包括横断面成像, 光学成像和内窥镜, 这使这些过程的直接可视化, 也允许重复分析相同的动物1,2,3. 此外, 在同一动物中反复监测各种疾病的可能性可能会减少所需的动物数量, 从动物伦理学的角度来看, 这可能是可取的。

几种不同的光学成像技术存在于体内荧光成像。最初, 共聚焦成像被用来研究表面和地下荧光事件4,5。然而, 最近, 允许进行定量的三维组织评估的层析系统已经开发成6。这是通过开发荧光探针, 在近红外线 (近红外光谱) 频谱发出光, 提供低吸收, 灵敏的探测器, 单色光源7。虽然传统的切削成像技术, 如计算机断层扫描 (CT), 磁共振成像 (MRI), 或超声 (美国), 主要依赖于物理参数和可视化形态学, 光学成像可以提供额外的信息使用内生或外源荧光探针的基础分子过程8

分子生物学的进步有助于为越来越多的目标提供智能和有针对性的荧光分子探针的生成。例如, 受体介导的摄取和分布在给定的目标区域可以可视化使用 carbocyanine 衍生物标记抗体9。大量可用的抗体, 可被标记为功能作为特定的示踪剂在其他无法进入的身体区域, 提供了前所未有的洞察力分子和细胞的过程中的模型的肿瘤和神经退行性,心血管、免疫学和炎症性疾病7

在这项研究中, 我们描述了使用荧光介导的层析成像在小鼠结肠炎模型。葡聚糖硫酸钠 (DSS) 诱导结肠炎是一种标准的化学诱导的小鼠肠道炎症模型, 类似炎症性肠病 (IBD)10。这是特别有用的评估先天免疫系统对发展的肠道炎症的贡献11。由于单核和巨噬细胞的招募、活化和浸润是 IBD 发病机制的关键步骤, 因此它们的招募和渗透动力学的可视化是监测的关键, 例如, 影响潜在的治疗性药物在临床前设置12。我们描述了诱导的 DSS 结肠炎, 并演示了利用荧光分子层析成像技术对巨噬细胞浸润肠黏膜的特性, 为单核/巨噬细胞标记 F4/80 的具体可视化13. 此外, 我们还说明了辅助和补充程序, 如抗体标签;实验装置;对所获得的图像进行分析和解释, 与常规读数相关, 如疾病活动指数、流式细胞仪和组织学分析、免疫组织化学。我们讨论这项技术的局限性和与其他成像方式的比较。

Protocol

根据德国动物保护法 (LANUV), 所有动物实验均经 Landesamt Natur、Umwelt 和 Verbraucherschutz (Nordrhein) Westfalen-Tierschutzgesetz。 1. 材料和实验装置 动物护理。 使用性别和年龄匹配的任何 DSS 敏感株 (例如, C57BL/6) 在20-25 克体重的小鼠。 根据当地的动物保育指南, 计划每组至少五只小鼠, 并将小鼠置于家中。 提供标准的鼠粮和蒸压饮用水…

Representative Results

结肠炎的评估: DSS 诱导的结肠炎是一种化学诱导的小鼠肠道炎症模型, 类似于人 IBD, 导致体重下降, 直肠出血, 表面溃疡, 和粘膜损害的敏感的老鼠15。研究先天免疫系统对肠道炎症发育的贡献特别有用10,11。为了能诱发 colitic 炎症, 小鼠在整个实验过程中…

Discussion

尽管近年来医学成像技术发展迅速, 但在早期的发育阶段, 我们在检测炎症过程或肿瘤以及其他疾病方面的能力仍然有限。然而, 这对于了解肿瘤的生长, 侵袭, 或转移的发展和细胞过程中的炎症性疾病和退化, 心血管和免疫疾病的发展至关重要。虽然传统的成像技术依赖于物理或生理参数, 分子成像使特定分子标记的可视化在体内20

对于小动物的成像,…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢 Ms. 索尼娅 Dufentester, Ms. Elke 韦伯和 Mrs. Klaudia Niepagenkämper 为优秀的技术援助。

Materials

Reagents
Alfalfa-free diet Harlan Laboritories, Madison, USA 2014
Bepanthen eye ointment Bayer, Leverkusen, Germany 80469764
Dextran sulphate sodium (DSS) TdB Consulatancy, Uppsala, Sweden DB001
Eosin Sigma – Aldrich, Deisenhofen, Germany E 4382
Ethylenediaminetetraacetic acid (EDTA)                          Sigma – Aldrich, Deisenhofen, Germany E 9884
Florene 100V/V Abbott, Wiesbaden, Germany B506
Haematoxylin                                                     Sigma – Aldrich, Deisenhofen, Germany HHS32-1L
O.C.T. Tissue Tek compound                                  Sakura, Zoeterwonde, Netherlands 4583 fixative for histological analyses
Phosphate buffered saline, PBS Lonza, Verviers, Belgium 4629
Sodium Chloride 0,9% Braun, Melsungen, Germany 5/12211095/0411
Sodium bicarbonate powder Sigma Aldrich Deisenhofen, Germany S5761
Standard diet Altromin, Lage, Germany 1320
Tissue-Tek Cryomold Sakura, Leiden, Netherlands 4566
Hemoccult (guaiac paper test) Beckmann Coulter, Germany 3060
Biotin rat-anti-mouse anti-F4/80 antibody Serotec, Oxford, UK MCA497B
Biotin rat-anti-mouse anti-GR-1  BD Pharmingen, Heidelberg Germany 553125
Streptavidin-Alexa546 Molecular Probes, Darmstadt, Germany S-11225 excitation/emission maximum:  556/573nm
Anti-CD11b rat-anti-mouse antibody TC Calteg, Burlingame, USA R2b06
Purified anti-mouse F4/80 antibody BioLegend, London, UK 123102
DAPI Sigma-Aldrich, Deisenhoffen, Germany D9542
FITC-conjugated anti-Ly6C rat-anti-mouse antibody BD Pharmingen, Heidelberg, Germany 553104
FACS buffer BD Pharmingen, Heidelberg, Germany 342003
Cy7 NHS Ester GE Healthcare Europe, Freiburg, Germany PA17104
MPO ELISA Immundiagnostik AG, Bensheim, Germany K 6631B
Cy5.5 labeled anti-mouse F4/80 antibody BioLegend, London, UK 123127 ready to use labelled Antibodies (alternative)
Anti-Mouse F4/80 Antigen PerCP-Cyanine5.5 eBioscience, Waltham, USA 45-4801-80 ready to use labelled Antibodies (alternative)
DMSO (Dimethyl sulfoxide) Sigma-Aldrich, Deisenhoffen, Germany 67-68-5
Isoflurane Sigma-Aldrich, Deisenhoffen, Germany 792632
Ethanol Sigma-Aldrich, Deisenhoffen, Germany 64-17-5
Bovine Serum Albumins (BSA) Sigma-Aldrich, Deisenhoffen, Germany A4612
Tris Buffered Saline Solution (TBS) Sigma-Aldrich, Deisenhoffen, Germany SRE0032
Name Company Catalog Number Comments
Equipment
FACS Calibur Flow Cytometry System BD Biosciences GmbH, Heidelberg, Germany
FMT 2000 In Vivo Imaging System PerkinElmer Inc., Waltham, MA, USA FMT2000
True Quant 3.1 Imaging Analysis Software PerkinElmer Inc., Waltham, MA, USA included in FMT2000
Leica DMLB Fluorescent Microscope Leica,  35578 Wetzlar, Germany  DMLB
Bandelin Sonopuls HD 2070 Bandelin, 12207 Berlin, Germany HD 2070 ultrasonic homogenizer
Disposable scalpel No 10 Sigma-Aldrich, Deisenhoffen, Germany Z692395-10EA
Metzenbaum scissors 14cm Ehrhardt Medizinprodukte GmbH, Geislingen, Germany 22398330
luer lock syringe 5ml Sigma-Aldrich, Deisenhoffen, Germany Z248010
syringe needles Sigma-Aldrich, Deisenhoffen, Germany Z192368 
Falcon Tube 50ml BD Biosciences, Erembodegem, Belgium 352070

References

  1. Bruckner, M., et al. Murine endoscopy for in vivo multimodal imaging of carcinogenesis and assessment of intestinal wound healing and inflammation. J Vis Exp. (90), (2014).
  2. Lewis, J. S., Achilefu, S., Garbow, J. R., Laforest, R., Welch, M. J. Small animal imaging. current technology and perspectives for oncological imaging. Eur J Cancer. 38 (16), 2173-2188 (2002).
  3. Bettenworth, D., et al. Translational 18F-FDG PET/CT imaging to monitor lesion activity in intestinal inflammation. J Nucl Med. 54 (5), 748-755 (2013).
  4. Vowinkel, T., et al. Apolipoprotein A-IV inhibits experimental colitis. J Clin Invest. 114 (2), 260-269 (2004).
  5. Korlach, J., Schwille, P., Webb, W. W., Feigenson, G. W. Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci USA. 96 (15), 8461-8466 (1999).
  6. Ntziachristos, V., Tung, C. H., Bremer, C., Weissleder, R. Fluorescence molecular tomography resolves protease activity in vivo. Nat Med. 8 (7), 757-760 (2002).
  7. Ntziachristos, V., Bremer, C., Weissleder, R. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol. 13 (1), 195-208 (2003).
  8. Ntziachristos, V., Bremer, C., Graves, E. E., Ripoll, J., Weissleder, R. In vivo tomographic imaging of near-infrared fluorescent probes. Mol Imaging. 1 (2), 82-88 (2002).
  9. Ballou, B., et al. Tumor labeling in vivo using cyanine-conjugated monoclonal antibodies. Cancer Immunol Immunother. 41 (4), 257-263 (1995).
  10. Wirtz, S., Neufert, C., Weigmann, B., Neurath, M. F. Chemically induced mouse models of intestinal inflammation. Nat Protoc. 2 (3), 541-546 (2007).
  11. Kawada, M., Arihiro, A., Mizoguchi, E. Insights from advances in research of chemically induced experimental models of human inflammatory bowel disease. World J Gastroenterol. 13 (42), 5581-5593 (2007).
  12. Nowacki, T. M., et al. The 5A apolipoprotein A-I (apoA-I) mimetic peptide ameliorates experimental colitis by regulating monocyte infiltration. Br J Pharmacol. 173 (18), 2780-2792 (2016).
  13. Hansch, A., et al. In vivo imaging of experimental arthritis with near-infrared fluorescence. Arthritis Rheum. 50 (3), 961-967 (2004).
  14. Bialkowska, A. B., Ghaleb, A. M., Nandan, M. O., Yang, V. W. Improved Swiss-rolling Technique for Intestinal Tissue Preparation for Immunohistochemical and Immunofluorescent Analyses. J Vis Exp. (113), (2016).
  15. Diaz-Granados, N., Howe, K., Lu, J., McKay, D. M. Dextran sulfate sodium-induced colonic histopathology, but not altered epithelial ion transport, is reduced by inhibition of phosphodiesterase activity. Am J Pathol. 156 (6), 2169-2177 (2000).
  16. Kim, J. J., Shajib, M. S., Manocha, M. M., Khan, W. I. Investigating intestinal inflammation in DSS-induced model of IBD. J Vis Exp. (60), e3678 (2012).
  17. Dieleman, L. A., et al. Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin Exp Immunol. 114 (3), 385-391 (1998).
  18. Kojouharoff, G., et al. Neutralization of tumour necrosis factor (TNF) but not of IL-1 reduces inflammation in chronic dextran sulphate sodium-induced colitis in mice. Clin Exp Immunol. 107 (2), 353-358 (1997).
  19. Sunderkotter, C., et al. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol. 172 (7), 4410-4417 (2004).
  20. Willmann, J. K., van Bruggen, N., Dinkelborg, L. M., Gambhir, S. S. Molecular imaging in drug development. Nat Rev Drug Discov. 7 (7), 591-607 (2008).
  21. Ntziachristos, V., Ripoll, J., Wang, L. V., Weissleder, R. Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol. 23 (3), 313-320 (2005).
  22. Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods. 7 (8), 603-614 (2010).
  23. Stuker, F., Ripoll, J., Rudin, M. Fluorescence molecular tomography: principles and potential for pharmaceutical research. Pharmaceutics. 3 (2), 229-274 (2011).
  24. Beziere, N., Ntziachristos, V. Optoacoustic imaging: an emerging modality for the gastrointestinal tract. Gastroenterology. 141 (6), 1979-1985 (2011).
  25. Habtezion, A., Nguyen, L. P., Hadeiba, H., Butcher, E. C. Leukocyte Trafficking to the Small Intestine and Colon. Gastroenterology. 150 (2), 340-354 (2016).
  26. Ungar, B., Kopylov, U. Advances in the development of new biologics in inflammatory bowel disease. Ann Gastroenterol. 29 (3), 243-248 (2016).
  27. Sandborn, W. J., et al. Vedolizumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med. 369 (8), 711-721 (2013).
  28. Vermeire, S., et al. Etrolizumab as induction therapy for ulcerative colitis: a randomised, controlled, phase 2 trial. Lancet. 384 (9940), 309-318 (2014).
  29. Coskun, M., Vermeire, S., Nielsen, O. H. Novel Targeted Therapies for Inflammatory Bowel Disease. Trends Pharmacol Sci. , (2016).
  30. Vermeire, S., et al. The mucosal addressin cell adhesion molecule antibody PF-00547,659 in ulcerative colitis: a randomised study. Gut. 60 (8), 1068-1075 (2011).
  31. Terai, T., Nagano, T. Small-molecule fluorophores and fluorescent probes for bioimaging. Pflugers Arch. 465 (3), 347-359 (2013).
  32. Ren, W., et al. Dynamic Measurement of Tumor Vascular Permeability and Perfusion using a Hybrid System for Simultaneous Magnetic Resonance and Fluorescence Imaging. Mol Imaging Biol. 18 (2), 191-200 (2016).
  33. Ale, A., Ermolayev, V., Deliolanis, N. C., Ntziachristos, V. Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer. J Biomed Opt. 18 (5), 56006 (2013).
  34. Chames, P., Van Regenmortel, M., Weiss, E., Baty, D. Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol. 157 (2), 220-233 (2009).
  35. Faust, A., Hermann, S., Schafers, M., Holtke, C. Optical imaging probes and their potential contribution to radiotracer development. Nuklearmedizin. 55 (2), 51-62 (2016).
  36. Mahler, M., et al. Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis. Am J Physiol. 274 (3 Pt 1), G544-G551 (1998).
check_url/55942?article_type=t

Play Video

Cite This Article
Nowacki, T. M., Bettenworth, D., Brückner, M., Cordes, F., Lenze, F., Becker, A., Wildgruber, M., Eisenblätter, M. Fluorescence-mediated Tomography for the Detection and Quantification of Macrophage-related Murine Intestinal Inflammation. J. Vis. Exp. (130), e55942, doi:10.3791/55942 (2017).

View Video