JoVE Science Education
Biochemistry
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Science Education Biochemistry
Density Gradient Ultracentrifugation
  • 00:00Overview
  • 00:40Principles of Density Gradient Ultracentrifugation
  • 02:47Preparing a Sucrose Density Gradient
  • 04:51Centrifugation
  • 05:55Applications
  • 08:15Summary

密度梯度超速离心法

English

Share

Overview

密度梯度超速离心法是一种常用的技术,用来分离和纯化生物大分子和细胞的结构。这项技术利用这一事实,悬浮稳定性高,是比溶剂密度的颗粒将泥沙,而那些不那么密集会浮起。为了分离生物分子内密度梯度,可以通过降低密度离心管分层液体建立情况下,高速离心用来加速这一进程。

该视频将覆盖密度梯度超速离心法,包括演示、 创作以及蔗糖梯度超速离心法,分馏物收集样品制备过程的原则。应用程序部分讨论隔离多蛋白复合物核酸合成物,和使用氯化铯密度梯度分离的隔离。

密度梯度超速离心法是常用的方法进行分离纯化生物化学实验的细胞结构。该技术使用高速、 或超,离心机无损分离密度梯度中的细胞成分。这个视频描述了密度梯度超速离心法的原则,提供的一般过程使用蔗糖梯度,并探讨了一些应用程序。

让我们开始通过检查超速和密度梯度的原则。悬浮液含有颗粒液体溶剂中。由于重力,粒子密度比溶剂沉淀出来而那些比溶剂浮密度较低。差额越大,密度之间的粒子和溶剂,越快的分离。

离心包含称为转子,在高度控制的速度旋转,模拟强引力场的单元。在这一领域内颗粒和溶剂密度的差异被放大。

场的强度取决于旋转的速度。甚至小转子在相对较低的转速可以创建力数以千计的时间比地球的引力场。

如果管包含几种液体的密度不同,离心将放在单独的图层顺序的密度,密度最大的液体接近基地。这种分层的多个液体称为”密度梯度”。有两种类型。在步骤梯度,降低密度的液体是一种仔细分层顶上另一个。在连续梯度,液体混合在不同的比例,所以,密度下降顺利从基部向上。

可以使用一步梯度,通过”等密度线密度梯度离心法”分离细胞的细胞器这是最简单、 最常见、 离心过程。

此过程用于分隔的细胞结构。更密集的细胞器,它进一步下降-与线粒体的顶部和底部的核酸。

现在,你知道这项技术背后的原则,让我们看看在实验室里。

开始此过程之前,应指出制造商的速度和密度评级,并超速离心检查腐蚀。此过程使用摆动桶转子。

首先,蜂窝材料被备均质单元格,其中无损释放他们的细胞器。匀浆可能通过初步低速离心,除去低密度组件分馏。下一步,准备了蔗糖溶液。

蔗糖被添加了越来越多,所以每个解决方案是更加集中,并且因此密度更高,比前一。解决方案的确切密度将取决于组件要分离,生物体之间会发生变化。解决方案应该有那些要分离,最后溶液密度比分析物的密度最高的组件的组件之间的密度。描述用于技术分离组件密度比蔗糖,核酸,像是在应用程序中。

在干净的离心管中,蔗糖梯度创建了。移液器用于绘制了最集中的蔗糖溶液。与管竖抱,针提示放在墙上,高和液体配药稳步下降。它是重要的工作区保存自由振动和其它干扰。

替换后的提示,依次降低密度添加剩余的解决方案。他们正在仔细配发,形成层次分明,避免混合。最后,大约一半毫升的细胞样品添加渐变,顶和管权衡。这用来平衡的重量分布下, 一步的过程。

离心法应尽快开始。将管置于转子,然后平衡通过在反对槽中放置的同等重量的空白解决方案。转子被摆在超速离心和密封系统。温度和转速和时间设置。典型值为 4 ° C,超过 100,000 x g 为 16 h 力。

离心后管撤出转子,注意保持它直立,不受干扰。不同的细胞组分有分割成离散乐队解决方案层之间。可以用注射器收集馏分。交替,管底部可以用精细、 消毒的针头刺破,流出收集在无菌试管中。现在已分离的细胞组成。可以将它们存储在-80 ° c。

现在,我们已经看到的基本程序,让我们看看一些应用程序。

典型的应用是在植物细胞中多蛋白质复合物的分离。在此示例中,配合物负责循环电子流被隔离从类囊体膜,该网站在光合作用的光反应。此过程使用离散解的 14 至 45%的蔗糖。离心法发生了 100,000 x g 为 14 h 在 4 ° c。

因为核酸是比蔗糖密度大,等密度离心法不能把他们分开细胞器无损。

使用不同的技术,称为”率纬向离心”。它将基于其沉积速率,取决于它们的密度,但其构象的细胞器分离出来。连续渐变用于分隔组件基于此属性。

程序步骤是类似于那些为等密度线例。在此示例中,核糖体 RNA 配合物孤立使用连续渐变的 5%至 20%,在 230,000 x g.离心离心后几个小时,以防止共沉淀中断。

密度的基础上,可以互相分离核酸链。

这是因为股富含鸟嘌呤和胞嘧啶密度比那些富含腺嘌呤和硫胺素。在这种情况下,梯度不能由蔗糖,因为蔗糖是密度小于核酸的密度。相反,我们会因为他们有足够的密度和粘度低,使用铯氯化渐变,通常从 1.65 至 1.75 g/毫升。

在这里我们看到浮游生物 DNA 被纯化使用连续铯氯化梯度。离心发生在真空条件下 18 小时超过 1,000,000 x g。

你刚看了朱庇特的视频上采用蔗糖密度梯度超速离心法。现在,您应该了解密度梯度是如何工作、 如何构建步骤梯度,以及如何装载和运行离心。谢谢观赏 !

Procedure

Disclosures

No conflicts of interest declared.

Transcript

Density gradient ultracentrifugation is a common approach to isolate and purify cell structures for biochemical experiments. The technique uses a high-speed, or ultra, centrifuge to nondestructively separate cellular components in a density gradient. This video describes the principles of density gradient ultracentrifugation, provides a general procedure using a sucrose gradient, and discusses some applications.

Let’s start by examining the principles of ultracentrifuges and density gradients. A suspension contains particles in a liquid solvent. Because of gravity, particles denser than the solvent sediment out while those less dense than the solvent float. The greater the difference in density between the particle and the solvent, the faster the separation.

An ultracentrifuge contains a unit called a rotor, which rotates at highly controlled speeds, simulating a strong gravitational field. Within this field, the differences in density between particles and the solvent are magnified.

The strength of the field depends on the speed of rotation. Even a small rotor at a relatively low rotational speed can create a force thousands of times stronger than the earth’s gravitational field.

If a tube contains several liquids of different densities, centrifugation will keep them in separate layers in order of density, with the densest liquid closest to the base. Such a layering of multiple liquids is called a “density gradient.” There are two types. In step gradients, liquids of decreasing density are carefully layered on top one another. In continuous gradients, the liquids are mixed in varying proportions, so the density decreases smoothly from the base upwards.

Cellular organelles can be separated using a step gradient, through “isopycnic density-gradient centrifugation.” This is the simplest and most common centrifugation procedure.

This procedure is used to separate the cellular structures. The more dense the organelle, the further it descends-with mitochondria at the top and nucleic acids towards the bottom.

Now that you know the principles behind the technique, let’s see it in the lab.

Before the procedure is started, the manufacturer’s speed and density ratings should be noted, and the ultracentrifuge checked for corrosion. This procedure uses a swinging-bucket rotor.

First, the cellular material is prepared by homogenizing the cells, which nondestructively releases their organelles. The homogenate may be fractionated through preliminary low-speed centrifugation, to remove low-density components. Next, the sucrose solutions are prepared.

Sucrose is added in increasing amounts so each solution is more concentrated, and therefore denser, than the preceding one. The exact densities of the solutions will depend on the components to be separated, which vary between organisms. The solutions should have densities between those of the components to be separated, with the last solution denser than the densest component of the analyte. Techniques for separating components denser than sucrose, like nucleic acids, are described in the applications.

The sucrose gradient is now created in a clean centrifuge tube. A pipette is used to draw up the most concentrated sucrose solution. With the tube held upright, the pipette tip is placed high against the wall, and the liquid dispensed steadily down. It’s important that the working area is kept free of vibrations and other disturbances.

After replacing the tip, the remaining solutions are added in order of decreasing density. They are dispensed carefully to form distinct layers and avoid mixing. Finally, about half a milliliter of the cellular sample is added atop the gradient, and the tube is weighed. This is used to balance the weight distribution, the next step of the process.

Centrifugation should begin as soon as possible. The tube is placed in the rotor, which is then balanced by placing blank solutions of equal weight in opposing slots. The rotor is placed in the ultracentrifuge and the system sealed. The temperature and rotation speed and time are set. Typical values are 4 °C with a force of over 100,000 x g for 16 h.

After centrifugation, the tube is withdrawn from the rotor, taking care to keep it upright and undisturbed. The different cellular components have fractionated into discrete bands between the solution layers. The fractions can be collected with a syringe. Alternately, the bottom of the tube can be punctured with a fine, sterilized needle and the outflow collected in sterile tubes. The cellular components have now been isolated. They can be stored at -80 °C.

Now that we’ve seen the basic procedure, let’s look at some applications.

A typical application is the isolation of multi-protein complexes in plant cells. In this example, complexes responsible for cyclic electron flow are being isolated from the thylakoid, the site of the light reaction in photosynthesis. This procedure uses discrete solutions of 14 to 45% sucrose. Centrifugation occurs over 100,000 x g for 14 h at 4 °C.

Because nucleic acids are denser than sucrose, isopycnic centrifugation cannot separate them from organelles nondestructively.

A different technique, known as “rate-zonal centrifugation” is used. It separates organelles based on their sedimentation rates, which depend not only on their densities, but also on their conformations. A continuous gradient is used to separate the components based on this property.

The procedural steps are similar to those for isopycnic cases. In this example, RNA-ribosome complexes are isolated using a continuous gradient of 5% to 20%, centrifuged at 230,000 x g. Centrifugation is interrupted after a few hours to prevent co-precipitation.

Nucleic acid strands can be separated from each other on the basis of density.

This is because strands rich in guanine and cytosine are denser than those rich in adenine and thiamine. In this case, the gradient cannot be made of sucrose, because sucrose is less dense than nucleic acids. Instead, cesium chloride gradients, typically from 1.65 to 1.75 g/mL are used, as they have sufficient density and a low viscosity.

Here we see plankton DNA being purified using a continuous cesium chloride gradient. Centrifugation occurs at over 1,000,000 x g for 18 h under vacuum.

You’ve just watched JoVE’s video on ultracentrifugation with a sucrose density gradient. You should now understand how a density gradient works, how to construct a step gradient, and how to load and operate an ultracentrifuge. Thanks for watching!

Tags

Cite This
JoVE Science Education Database. JoVE Science Education. Density Gradient Ultracentrifugation. JoVE, Cambridge, MA, (2023).

Related Videos