Summary

Impact des neurones intracardiaques sur l’électrophysiologie cardiaque et arythmogenèse dans un système de Langendorff Ex Vivo

Published: May 22, 2018
doi:

Summary

Nous présentons ici un protocole pour la modulation du système nerveux autonome intracardiaque et l’évaluation de son influence sur l’électrophysiologie fondamentale, arythmogenèse et cAMP dynamique en utilisant une configuration de Langendorff ex vivo .

Abstract

Depuis son invention à la fin du 19ème siècle, le système de perfusion Langendorff ex vivo le cœur continue d’être un outil pertinent pour étudier un large éventail de paramètres physiologiques, morphologiques, biochimiques et pharmacologiques coeurs au centre dénervés. Nous décrivons ici une configuration pour la modulation du système nerveux autonome intracardiaque et l’évaluation de son influence sur l’électrophysiologie fondamentale, arythmogenèse et dynamique de l’adénosine monophosphate cyclique (AMPc). Système nerveux autonome intracardiaque est modulé par la dissection mécanique de graisse auriculaire tampons-dans les ganglions murines sont situées principalement — ou par l’utilisation d’interventions pharmacologiques ciblées mais aussi mondiales. Un cathéter électrophysiologiques octapolar est introduit dans l’oreillette droite et le ventricule droit et tableaux multi-électrode épicardique placés (MEA) pour la cartographie à haute résolution sont utilisés pour déterminer l’arythmogenèse et électrophysiologie cardiaque. Transfert d’énergie par résonance Förster (FRET) d’imagerie est réalisée pour la surveillance en temps réel du taux d’AMPc dans différentes régions cardiaques. Neuromorphology est étudié au moyen d’anticorps-basée la coloration des coeurs entiers à l’aide de marqueurs neurones pour guider l’identification et la modulation des objectifs spécifiques du système nerveux autonome intracardiaque dans les études effectuées. La configuration de Langendorff ex vivo permet pour un grand nombre d’expériences reproductibles en peu de temps. Néanmoins, la nature en partie ouverte de l’installation (p. ex.., pendant les mesures de la MEA) contrôle de température constante est difficile et doit être maintenue à un minimum. Cette méthode décrite permet d’analyser et de moduler l’intracardiaque système nerveux dans les coeurs décentralisé.

Introduction

Le système de perfusion Langendorff ex vivo le cœur continue d’être un outil pertinent pour effectuer un large éventail de morphologiques, biochimiques et physiologiques, et des études pharmacologiques dans dénervé centralement coeurs1,2 ,3,4,5 depuis son invention en fin 19ème siècle6. A ce jour, ce système est encore largement utilisé pour divers sujets (p. ex.., ischémie reperfusion) ou étudier cardiaque pharmacologique effets7,8et est un outil de base en recherche cardiovasculaire. La longévité de cette méthode résulte de plusieurs avantages (p. ex.., les mesures sont effectuées sans l’influence du système nerveux central ou autres organes, circulation systémique ou hormones circulantes). Si nécessaire, produits pharmaceutiques peuvent être ajoutés de façon contrôlée dans la mémoire tampon de perfusion ou appliqués directement à des structures spécifiques. Des expériences sont reproductibles, et un nombre relativement élevé d’expériences peut être effectué dans un court laps de temps. La nature ouverte (en partie) de l’installation peut faire la régulation de la température difficile et doit être pris en compte. Bien que le système de Langendorff est également utilisé dans la plus grande espèce9, petits animaux sont principalement utilisés comme le montage expérimental est moins complexe et une plus grande variabilité biologique (p. ex.., transgéniques modèles murins) peut être utilisé.

Le dispositif expérimental du présent protocole, l’influence du système nerveux autonome intracardiaque sur base paramètres électrophysiologiques, arythmogenèse ventriculaire, conduction épicardique et dynamique de l’adénosine monophosphate cyclique (AMPc) est évalué. Un grand nombre de ganglions intracardiaques, qui sont principalement situées dans les coussinets adipeux auriculaires et sont désormais bien connus pour contrôler l’électrophysiologie cardiaque indépendant de contrôle nerveux central, est que soit laissés intacts ou supprimé manuellement avec soin mécanique dissection. Une modulation pharmacologique du système nerveux autonome est réalisée à l’échelle mondiale en ajoutant des produits pharmaceutiques vers le tampon de perfusion ou localement par modulation ciblée des ganglions auriculaires. Après les expériences, les coeurs sont bien adaptés pour une évaluation immunohistological comme toutes les cellules sanguines ont été supprimées en raison de la perfusion continue, qui permet d’augmenter la qualité de la coloration.

L’objectif global des techniques décrites est d’offrir de nouvelles perspectives pour des études détaillées concernant l’incidence du système nerveux autonome sur l’électrophysiologie cardiaque et arythmogenèse dans le coeur de souris. Une raison d’utiliser cette technique est qu’il est possible d’étudier et de modifier le système nerveux sans l’impact du système nerveux central. Un avantage majeur est l’emploi facile des expériences pharmacologiques, dans quelles propriétés antiarythmiques ou pro – potentielles de vieux et nouveaux agents peuvent être testés. En outre, des modèles de souris transgéniques et knock-out de diverses maladies cardiaques sont disponibles pour étudier les mécanismes qui sous-tendent les arythmies, insuffisance cardiaque ou des maladies métaboliques. Cette approche a amélioré notre compréhension de la façon dont le système nerveux autonome au niveau auriculaire peut avoir des répercussions électrophysiologie cardiaque ventriculaire et l’induction des arythmies.

Protocol

Toutes les procédures impliquant des animaux ont été approuvées par les autorités locales des comités de l’utilisation, soins aux animaux de l’Université de Hambourg et l’état de Hambourg. 1. préparation de l’appareil de Langendorff NOTE : Un système de perfusion Langendorff commercialement disponible est utilisé. Préparer une solution de Krebs-Henseleit modifiée (119 mM de 25 mM de bicarbonate de sodium, 4,6 mM de 1,2 mM de phosphate…

Representative Results

La figure 1 montre une image de l’installation de Langendorff dont 2 rangées d’électrodes multiples (AME). Avant l’expérience, le cathéter intracardiaque est positionné à proximité de la canule pour faciliter une insertion rapide et facile dans le ventricule droit atrium/droit tout en assurant une courte période de temps jusqu’à ce que l’équilibration peut commencer. La partie inférieure de la chambre peut être accrue (voir les flèches da…

Discussion

Dans ce manuscrit, le système de perfusion du Langendorff ex vivo coeur bien connu est présenté comme un outil pour étudier l’impact des neurones intracardiaques sur l’électrophysiologie cardiaque et arythmogenèse en utilisant la cartographie différente et les techniques de stimulation y compris les approches endocardiques et épicardiques.

Plusieurs parties du protocole sont cruciales pour le programme d’installation. Tout d’abord, il est important d’utiliser une tec…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Les auteurs aimeraient remercier Hartwig Wieboldt pour son excellente assistance technique et l’UKE Microscopy Imaging Facility (Umif) du centre médical universitaire Hamburg-Eppendorf de fournir microscopes et soutien. Cette recherche a été financée bythe Förderverein des universitaire Herzzentrums Hamburg e.V. et par le DZHK (Centre allemand de recherche cardiovasculaire) [FKZ 81Z4710141].

Materials

Sodium chloride Sigma-Aldrich S3014 Modified Krebs-Henleit solution
Sodium hydrogencarbonate Sigma-Aldrich 401676 Modified Krebs-Henleit solution
Potassium chloride Sigma-Aldrich P5405 Modified Krebs-Henleit solution
Potassium phosphate monobasic Sigma-Aldrich P5655 Modified Krebs-Henleit solution
Magnesium sulfate heptahydrate Sigma-Aldrich M1880 Modified Krebs-Henleit solution
Calcium chloride dihydrate Sigma-Aldrich C7902 Modified Krebs-Henleit solution
Glucose Sigma-Aldrich G5767 Modified Krebs-Henleit solution
Sodium pyruvate bioXtra Sigma-Aldrich P8574 Modified Krebs-Henleit solution
Carbogen (95% O2 / 5% CO2) SOL-Group, TMG Technische und Medizinische Gas GmbH, Krefeld, Gersthofen, Germany Modified Krebs-Henleit solution
Sterile filter steritop-GP 0.22 EMD Millipore SCGPT05RE Modified Krebs-Henleit solution
Atropine sulfate Sigma-Aldrich A0257 Neuromodulation
Hexamethonium chloride Sigma-Aldrich H2138 Neuromodulation
Nicotine free base 98-100% Sigma-Aldrich N3876 Neuromodulation
Formalin solution neutral buffered 10% Sigma-Aldrich HT501128 Whole mount staining
Tris(hydroxymethyl)aminomethane Sigma-Aldrich 252859 Whole mount staining
Methanol Sigma-Aldrich 34860 Whole mount staining
Hydrogen peroxide solution 30% (w/w) in H2O Merck, KGA, Darmstadt, Germany H1009 Whole mount staining
Dimethyl sulfoxide Merck, KGA, Darmstadt, Germany D8418 Whole mount staining
Phosphate-buffered saline tablets Gibco / Invitrogen 18912-014 Whole mount staining
Triton-x-100 Sigma-Aldrich T8787 Whole mount staining
Albumin bovine fraction V Biomol, Hamburg, Germany 11924.03 Whole mount staining
Chicken anti neurofilament EMD Millipore AB5539 Whole mount staining
Rabbit anti tyrosine hydroxylase EMD Millipore AB152 Whole mount staining
Goat anti choline acetyltransferase EMD Millipore AP144P Whole mount staining
Donkey α rabbit IgG Alexa 488 Thermo Fisher Scientific A21206 Whole mount staining
Donkey α goat IgG Alexa 568 Thermo Fisher Scientific A11057 Whole mount staining
Donkey α chicken IgY Alexa 647 Merck, KGA, Darmstadt, Germany AP194SA6 Whole mount staining
Biotin-conjugated donkey α rabbit igG R&D Systems AP182B Whole mount staining
Biotin-conjugated donkey α goat igG R&D Systems AP192P Whole mount staining
Biotin-conjugated goat α chicken igY R&D Systems BAD010 Whole mount staining
Vectashield mounting medium Vector laboratories, Burlingame, CA, USA H-1000 Immunohistochemistry
Vectastain ABC kit Vector laboratories, Burlingame, CA, USA PK-4000 Immunohistochemistry
Steady DAB/Plus Abcam plc, Cambridge, UK ab103723 Whole mount staining
HistoClear DiaTec, Bamberg, Germany HS2002 Immunohistochemistry
BisBenzimide H33342 trihydrochloride (Hoechst) Sigma-Aldrich, St. Louis, MO, USA B2261 Immunohistochemistry
Vectashield HardSet mounting medium Vector laboratories, Burlingame, CA, USA VEC-H-1400 Immunohistochemistry
Perfusion system HUGO SACHS ELEKTRONIK – HARVARD APPARATUS GmbH, March-Hugstetten, Germany  73-4343 Langendorff apparatus
Data acquisition system and corresponding software for catheter and physiological parameter Powerlab 8/30 & Labchart, ADInstruments, Dunedin, New Zealand PL3508 PowerLab 8/35 Langendorff setup
Octapolar catheter CIB’ER Mouse, NuMed Inc., Hopkinton, NY, USA custom Langendorff setup
Stimulus generator STG4002, Multi Channel Systems, Reutlingen, Germany STG4002-160µA Stimulation setup
Stimulation software Multi Channel Systems, Reutlingen, Germany MC_Stimulus II Stimulation setup
Data acquisition system and corresponding software for epicardial electrograms ME128-FAI-MPA-System, Multi Channel Systems, Reutlingen, Germany USB-ME128-System MEA setup
Multi-electrode array MEA, EcoFlexMEA36, Multi Channel Systems, Reutlingen, Germany EcoFlexMEA36 MEA setup
Multi-electrode array recording software Multi Channel Systems, Reutlingen, Germany MC_Rack MEA setup
Spring scissors Fine Science Tools GmbH, Heidelberg, Germany 15003-08 Heart Preparation
Strabismus Scissors Fine Science Tools GmbH, Heidelberg, Germany 14575-09 Heart Preparation
Mayo Scissors Fine Science Tools GmbH, Heidelberg, Germany 14110-15 Heart Preparation
Dumont SS Forceps Fine Science Tools GmbH, Heidelberg, Germany 11203-25 Heart Preparation
London Forceps Fine Science Tools GmbH, Heidelberg, Germany 11080-02 Heart Preparation
Narrow Pattern Forceps Fine Science Tools GmbH, Heidelberg, Germany 11003-13 Heart Preparation
Plastic Wrap Parafilm M, Bemis NA, based in Neenah, WI, United States Consumable Materials
Stereomicroscope Leica M165FC; Leica Microsystems GmbH, Wetzlar, Germany FRET
LED CoolLED, Andover, UK pE-100 FRET
DualView Photometrics, Tucson, AZ, USA DV2-SYS FRET
DualView filter set Photometrics, Tucson, AZ, USA 05-EM FRET
optiMOS scientific CMOS camera Qimaging, Surrey, BC, Canada 01-OPTIMOS-R-M-16-C FRET
Imaging software   Micro-Manager; Vale Lab, University of California San Francisco, CA, USA FRET
Analysis Software Image J software; Public Domain, NIH, USA FRET

References

  1. Bell, R. M., Mocanu, M. M., Yellon, D. M. Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. Journal of Molecular and Cellular Cardiology. 50 (6), 940-950 (2011).
  2. Sutherland, F. J., Hearse, D. J. The isolated blood and perfusion fluid perfused heart. Pharmacological Research. 41 (6), 613-627 (2000).
  3. Hearse, D. J., Sutherland, F. J. Experimental models for the study of cardiovascular function and disease. Pharmacological Research. 41 (6), 597-603 (2000).
  4. Valentin, J. P., Hoffmann, P., De Clerck, F., Hammond, T. G., Hondeghem, L. Review of the predictive value of the Langendorff heart model (Screenit system) in assessing the proarrhythmic potential of drugs. Journal of Pharmacological and Toxicological Methods. 49 (3), 171-181 (2004).
  5. Skrzypiec-Spring, M., Grotthus, B., Szelag, A., Schulz, R. Isolated heart perfusion according to Langendorff-still viable in the new millennium. Journal of Pharmacological and Toxicological Methods. 55 (2), 113-126 (2007).
  6. Langendorff, O. Investigation of the living mammalian heart. Pflügers Archiv. 61, 291-332 (1895).
  7. Matsumoto-Ida, M., Akao, M., Takeda, T., Kato, M., Kita, T. Real-time 2-photon imaging of mitochondrial function in perfused rat hearts subjected to ischemia/reperfusion. Circulation. 114 (14), 1497-1503 (2006).
  8. Rassaf, T., Totzeck, M., Hendgen-Cotta, U. B., Shiva, S., Heusch, G., Kelm, M. Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circulation Research. 114 (10), 1601-1610 (2014).
  9. Schechter, M. A., et al. An isolated working heart system for large animal models. Journal of Visualized Experiments. 88 (88), 51671 (2014).
  10. Stockigt, F., et al. Total beta-adrenoceptor knockout slows conduction and reduces inducible arrhythmias in the mouse heart. PLoS One. 7 (11), e49203 (2012).
  11. Berul, C. I. Electrophysiological phenotyping in genetically engineered mice. Physiological Genomics. 13 (3), 207-216 (2003).
  12. Curtis, M. J., et al. The Lambeth Conventions (II): guidelines for the study of animal and human ventricular and supraventricular arrhythmias. Pharmacology & Therapeutics. 139 (2), 213-248 (2013).
  13. Schrickel, J. W., et al. Enhanced heterogeneity of myocardial conduction and severe cardiac electrical instability in annexin A7-deficient mice. Cardiovascular Research. 76 (2), 257-268 (2007).
  14. Rudolph, V., et al. Myeloperoxidase acts as a profibrotic mediator of atrial fibrillation. Nature Medicine. 16 (4), 470-474 (2010).
  15. Jungen, C., et al. Disruption of cardiac cholinergic neurons enhances susceptibility to ventricular arrhythmias. Nature Communications. 8, 14155 (2017).
  16. Calebiro, D., et al. Persistent cAMP-signals triggered by internalized G-protein-coupled receptors. PLoS Biology. 7 (8), e1000172 (2009).
  17. Sprenger, J. U., Perera, R. K., Götz, K. R., Nikolaev, V. O. FRET microscopy for real-time monitoring of signaling events in live cells using unimolecular biosensors. Journal of Visualized Experiments. (66), e4081 (2012).
  18. Alanentalo, T., et al. Tomographic molecular imaging and 3D quantification within adult mouse organs. Nature Methods. 4 (1), 31-33 (2007).
  19. Whittington, N. C., Wray, S. Suppression of red blood cell autofluorescence for immunocytochemistry on fixed embryonic mouse tissue. Current Protocols in Neuroscience. 81, 2.28.1-2.28.12 (2017).
  20. Fukuda, K., Kanazawa, H., Aizawa, Y., Ardell, J. L., Shivkumar, K. Cardiac innervation and sudden cardiac death. Circulation Research. 116 (12), 2005-2019 (2015).
  21. Wengrowski, A. M., Wang, X., Tapa, S., Posnack, N. G., Mendelowitz, D., Kay, M. W. Optogenetic release of norepinephrine from cardiac sympathetic neurons alters mechanical and electrical function. Cardiovascular Research. 105 (2), 143-150 (2015).
  22. Rivinius, R., et al. Control of cardiac chronotropic function in patients after heart transplantation: effects of ivabradine and metoprolol succinate on resting heart rate in the denervated heart. Clinical Research in Cardiology. , (2017).
  23. Ajijola, O. A., et al. Augmentation of cardiac sympathetic tone by percutaneous low-level stellate ganglion stimulation in humans: a feasibility study. Physiological Reports. 3 (3), e12328 (2015).
check_url/57617?article_type=t

Play Video

Cite This Article
Jungen, C., Scherschel, K., Bork, N. I., Kuklik, P., Eickholt, C., Kniep, H., Klatt, N., Willems, S., Nikolaev, V. O., Meyer, C. Impact of Intracardiac Neurons on Cardiac Electrophysiology and Arrhythmogenesis in an Ex Vivo Langendorff System. J. Vis. Exp. (135), e57617, doi:10.3791/57617 (2018).

View Video