Summary

热 Nanoimprinting 技术制备梯度 Nanopattern 及其对人血管内皮细胞菌落形成的响应筛选

Published: July 01, 2018
doi:

Summary

在这里, 我们提出了一个通过热 nanoimprinting 制备梯度 nanopattern 板的协议, 以及筛选人类内皮祖细胞对纳米结构的反应的方法。通过使用所描述的技术, 有可能产生一个脚手架, 可以操纵细胞行为的物理刺激。

Abstract

Nanotopography 可以在身体周围的各种细胞外基质 (ECMs) 中找到, 并且已知对细胞反应有重要的调控作用。然而, 由于缺乏适当的筛查工具, 很难确定纳米结构的尺寸与细胞的反应之间的关系。在这里, 我们展示了可重现的和经济高效的梯度 nanopattern 板的开发, 用于操作细胞反应。以阳极氧化铝 (氧化铝) 为主要模具, 采用热印迹技术制备了 nanopillars 直径范围增大的梯度 nanopattern 板 [120-200 nm (gp 120/200)、200-280 nm (gp 200/280) 和 280-360 nm (gp 280/360)]。这些梯度 nanopattern 板的设计, 以模仿不同大小的 nanotopography 在 ECM 和被用来筛选的反应, 人类内皮细胞集落形成单元 (hECFCs)。在本协议中, 我们描述了在细胞工程中制作梯度 nanopattern 板的分步过程, 从人外周血中培养 hECFCs 的技术, 以及在 nanopattern 板上培养 hECFCs。

Introduction

近年来, 在细胞工程1234等领域, 对表面形貌的物理刺激对细胞的反应关注。因此, 更多的注意力集中在三维纳米结构在细胞附着表面5。据报道, 整合素是细胞的表面识别装置, 通过机械转导6传递了 ECM 微纳米结构驱动的物理刺激。这种机械刺激调节细胞行为通过接触指导7和诱导骨架重组改变形状, 除了病灶粘连和僵硬的细胞8

人体内皮祖细胞 (hEPCs) 在体内与周围 ECM9的微环境紧密地相互作用。这表明 ECM 的物理状态作为特定细胞基质粘附复合物形成的一个重要参数, 与血流产生的剪应力10有关。据报道, 表面 nanotopography 增强了 hEPCs11毛细管网络的体外形成, ECM/生物可溶性因子联合系统使 hEPCs 能够识别功能失调的基底, 并促进伤口愈合12,13。然而, ECM 和 hEPCs 之间的关系还没有得到明确的理解。

虽然许多研究人员试图澄清细胞反应和物理线索之间的关系, 从不同的基质14,15,16, 这些研究只使用固定尺寸的纳米结构或nanopatterns 与不规则的安排有限制, 以阐明纳米结构和细胞行为的大小之间的关系。这里的问题是缺乏合适的工具来筛选细胞的反应, 可以取代现有的繁琐和迭代的方法, 以找到最佳尺寸的纳米结构。因此, 需要一个简单的技术来筛选细胞反应的物理刺激不重复。

在这里, 我们描述了一个方法, 在我们以前的报告17,18,19产生一个梯度 nanopattern, 其中排列的 nanopillars 直径逐渐增加。此外, 我们还描述了如何培养和分析 hECFCs 在梯度 nanopattern 板上的行为, 以确定物理刺激对细胞的影响。采用轻度阳极氧化、渐进蚀刻和防粘层涂敷的方法, 制备了梯度氧化铝模具。采用热印迹光刻技术, 以成本效益高、简便的方式生产出相同的聚苯乙烯梯度 nanopatterns。利用梯度 nanopatterns, 确定纳米结构的大小对一组实验中的细胞行为有很大的影响是可行的。我们期望这种梯度 nanopattern 有助于理解血液衍生 hECFC 或其他细胞与不同尺寸的纳米结构之间的相互作用机制。

Protocol

这项研究是由韩国大学 Anam 医院的机构审查委员会批准的 (IRB 号。ED170495)。所有程序都是按照《赫尔辛基宣言》及其后来的修正案进行的。 1. 用抛光制备铝 (铝) 基板 警告:抛光溶液具有腐蚀性和毒性。佩戴个人防护用品, 包括丁腈橡胶手套、护目镜和实验室大衣。在通风罩中执行此步骤。 在 60% L 双夹克烧杯 (c1h2oh: HClO…

Representative Results

图 1显示了根据其类型和位置, 制备的梯度氧化铝模具的 SEM 图像。图 2显示了具有正圆 nanopillars 的梯度 nanopattern 板的 SEM 图像,图 3是 nanopillar 直径的量化数据。表 1列出了预制 nanopillars 的特点。 图 4A显示了血液衍生 hECFCs …

Discussion

阳极氧化铝的制备常常受到裂纹、孔隙形状不规则和燃烧等缺陷的影响。这些缺陷的主要原因称为电解击穿, 这是严重影响了金属基板的本质是电化铝和电阻率的电解质21。由于电解质的电阻率随温度的不同而变化, 从电极上连续消除热量是保持电解质在这种高压阳极氧化条件下的位置温度稳定的关键点。在本协议中, 我们通过修改 Masuda 的两步阳极氧化22,</su…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了由教育部、科学技术部 (MEST) [NRF-2015R1D1A1A01060397] 资助的韩国国家研究基金会 (NRF) 和生物 & 医疗技术发展的基础科学研究项目的支持。由科学、信息和通信技术 & 未来规划部资助的 NRF 计划 [NRF-2017M3A9C6029563]。

Materials

Perchloric acid 60% Daejung Chemicals & Metals 6512-4100
Ethyl alcohol, absolute 99.9% Daejung Chemicals & Metals 4118-4100
Phosphoric acid 85% Daejung Chemicals & Metals 6532-4400
Methyl alcohol 99.5% Daejung Chemicals & Metals 5558-4400
Chromium(VI) oxide Daejung Chemicals & Metals 2558-4400
Sulfuric acid 95% Daejung Chemicals & Metals 7781-4100
Hydrogen peroxide 30% Daejung Chemicals & Metals 4104-4400
n-hexane 95% Daejung Chemicals & Metals 4081-4400
Toluene 99.5% Daejung Chemicals & Metals 8541-4400
(heptadecafluoro-1,1,2,2,-tetrahydrodecyl)dimethylchlorosilane Gelest SIH5840.4 Moisture sensitive
Methoxynonafluorobutane 99% Sigma aldrich 464309
Collagen solution Stemcell #4902
Gelatin Sigma aldrich G1890 Protein coating solution
Ficoll-Paque GE Heathcare 17-1440-03 Hydrophilic polysaccharide solution
EGM-2MV Lonza CC-3202 Endothelial cell expansion medium
Penicillin-Streptomycin Gibco 15140-122
Phosphate buffered saline Gibco 10010031
Fetal bovine serum Gibco 12483-020
Paraformaldehyde Sigma aldrich P6148
Glutaraldehyde Sigma aldrich G5882-100ML
Osmium tetroxide Sigma aldrich 201030-1G
Hexamethyldisilazane Sigma aldrich 440191
Triton X-100 Sigma aldrich X100-100ML Octylphenol ethoxylate 
Goat serum Gibco 26050-088
anti-human vinculin primary antibody  Sigma aldrich V9131
F-actin probe Molecular Probes A12379 Fluorescence-conjugated phalloidin
Alexa Fluor 488-conjugated anti-mouse IgG antibody Molecular Probes A11001 Fluorescence-conjugated secondary antibody 
4',6-diamidino-2-phenylindole  Sigma aldrich D9542
Mounting medium DAKO S3023
Anti-human vWF primary antibody  DAKO A0082
Anti-human CD144 primary antibody  BD Biosciences #555661
Eponate 12™ Embedding Kit, with BDMA Ted Pella 18012 Epoxy resin
Uranyl Acetate, 25g Ted Pella 19481
Lead Citrate, Trihydrate, 10g Ted Pella 19312
Ultra pure aluminum plate Goodfellow 26050-088
Polystyrene sheet Goodfellow ST313120
8.0" silicon wafer Siltron 29-01024-03 Single side polished, 725 µm thick
Vacuum desiccator, 4.4 L Kartell KA.230
Vacuum pump Vacuumer V3.VOP100
Power supply Unicorntech UDP-3003
Magnetic stirrer Daihan scientific SL.SMS03022
Overhead stirrer Daihan scientific HT120DX
Circulator Daihan scientific WCR-P12
Linear moving stage Zaber A-LSQ300A-E01-KT07
Angle bracket, 90 degrees Zaber AB90M Accessory of the linear moving stage
PMP forcep, 145 mm Vitlab 67995 Nonmetallic tweezer
PTFE beaker, 250 mL Cowie CW007.25
Ultrasonic cleaner Branson B2510MTH
PCB cutter Hozan Tool Industrial K-110
Nanoimprint device Nanonex NX-2000
Oxygen plasma generator Femto Science CUTE
Low temperature sterilizer Lowtem Crystal 50
CO2 Incubator Panasonic MCO-18AC
Confoal laser scanning microscope Carl Zeiss LSM700
Scanning electron microscope JEOL JSM6701
Transmission electron microscope Hitachi H-7500

References

  1. Dalby, M. J., Gadegaard, N., Oreffo, R. O. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nature materials. 13 (6), 558-569 (2014).
  2. Qian, W., Gong, L., Cui, X., Zhang, Z., Bajpai, A., Liu, C., Castillo, A., Teo, J. C., Chen, W. Nanotopographic Regulation of Human Mesenchymal Stem Cell Osteogenesis. ACS Applied Materials & Interfaces. 9 (48), 41794-41806 (2017).
  3. Naganuma, T. The relationship between cell adhesion force activation on nano/micro-topographical surfaces and temporal dependence of cell morphology. Nanoscale. 9 (35), 13171-13186 (2017).
  4. Han, J., Lin, K. H., Chew, L. Y. Study on the regulation of focal adesions and cortical actin by matrix nanotopography in 3D environment. Journal of Physics: Condensed Matter. 29 (45), 455101 (2017).
  5. Liu, X., Wang, S. Three-dimensional nano-biointerface as a new platform for guiding cell fate. Chemical Society Reviews. 43 (8), 2385-2401 (2014).
  6. Turner, L. A., Dalby, M. J. Nanotopography-potential relevance in the stem cell niche. Biomaterials science. 2 (11), 1574-1594 (2014).
  7. Driscoll, M. K., Sun, X., Guven, C., Fourkas, J. T., Losert, W. Cellular contact guidance through dynamic sensing of nanotopography. ACS nano. 8 (4), 3546-3555 (2014).
  8. Yim, E. K., Darling, E. M., Kulangara, K., Guilak, F., Leong, K. W. Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials. 31 (6), 1299-1306 (2010).
  9. Davis, G. E., Senger, D. R. Endothelial extracellular matrix. Circulation research. 97 (11), 1093-1107 (2005).
  10. Nakayama, K. H., Surya, V. N., Gole, M., Walker, T. W., Yang, W., Lai, E. S., Ostrowski, M. A., Fuller, G. G., Dunn, A. R., Huang, N. F. Nanoscale patterning of extracellular matrix alters endothelial function under shear stress. Nano letters. 16 (1), 410-419 (2015).
  11. Bettinger, C. J., Zhang, Z., Gerecht, S., Borenstein, J. T., Langer, R. Enhancement of in vitro capillary tube formation by substrate nanotopography. Advanced materials. 20 (1), 99-103 (2008).
  12. Katz, B. Z., Zamir, E., Bershadsky, A., Kam, Z., Yamada, K. M., Geiger, B. Physical state of the extracellular matrix regulates the structure and molecular composition of cell-matrix adhesions. Molecular biology of the cell. 11 (3), 1047-1060 (2000).
  13. Deanfield, J. E., Halcox, J. P., Rabelink, T. J. Endothelial function and dysfunction. Circulation. 115 (10), 1285-1295 (2007).
  14. Tajima, S., Chu, J., Li, S., Komvopoulos, K. Differential regulation of endothelial cell adhesion, spreading, and cytoskeleton on low-density polyethylene by nanotopography and surface chemistry modification induced by argon plasma treatment. Journal of Biomedical Materials Research Part A. 84 (3), 828-836 (2008).
  15. Mohiuddin, M., Pan, H. A., Hung, Y. C., Huang, G. S. Control of growth and inflammatory response of macrophages and foam cells with nanotopography. Nanoscale research letters. 7 (1), 394 (2012).
  16. Kyle, D. J., Oikonomou, A., Hill, E., Bayat, A. Development and functional evaluation of biomimetic silicone surfaces with hierarchical micro/nano-topographical features demonstrates favourable in vitro foreign body response of breast-derived fibroblasts. Biomaterials. 52, 88-102 (2015).
  17. Seo, H. R., Joo, H. J., Kim, D. H., Cui, L. H., Choi, S. C., Kim, J. H., Cho, S. W., Lee, K. B., Lim, D. S. Nanopillar Surface Topology Promotes Cardiomyocyte Differentiation through Cofilin-Mediated Cytoskeleton Rearrangement. ACS Applied Materials & Interfaces. 9 (20), 16803-16812 (2017).
  18. Hwang, J. H., Lee, D. H., Byun, M. R., Kim, A. R., Kim, K. M., Park, J. I., Oh, H. T., Hwang, E. S., Lee, K. B., Hong, J. H. Nanotopological plate stimulates osteogenic differentiation through TAZ activation. Scientific Reports. 7 (1), 3632 (2017).
  19. Bae, D., Moon, S. H., Park, B. G., Park, S. J., Jung, T., Kim, J. S., Lee, K. B., Chung, H. M. Nanotopographical control for maintaining undifferentiated human embryonic stem cell colonies in feeder free conditions. Biomaterials. 35 (3), 916-928 (2014).
  20. Cui, L. H., Joo, H. J., Kim, D. H., Seo, H. R., Kim, J. S., Choi, S. C., Huang, L. H., Na, J. E., Lim, I. R., Kim, J. H. Manipulation of the response of human endothelial colony-forming cells by focal adhesion assembly using gradient nanopattern plates. Acta biomaterialia. 65, 272-282 (2017).
  21. Lee, W., Park, S. J. Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chemical reviews. 114 (15), 7487-7556 (2014).
  22. Masuda, H., Fukuda, K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. science. 268 (5216), 1466 (1995).
  23. Masuda, H., Satoh, M. Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Japanese Journal of Applied Physics. 35 (1B), L126 (1996).
  24. Zaraska, L., Sulka, G. D., Jaskuła, M. The effect of n-alcohols on porous anodic alumina formed by self-organized two-step anodizing of aluminum in phosphoric acid. Surface and Coatings Technology. 204 (11), 1729-1737 (2010).
  25. Yang, K. Y., Kim, J. W., Byeon, K. J., Lee, H. Selective deposition of the silver nano-particles using patterned the hydrophobic self-assembled monolayer patterns and zero-residual nano-imprint lithography. Microelectronic engineering. 84 (5), 1552-1555 (2007).
  26. Park, B. G., Lee, W., Kim, J. S., Lee, K. B. Superhydrophobic fabrication of anodic aluminum oxide with durable and pitch-controlled nanostructure. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 370 (1), 15-19 (2010).
check_url/57661?article_type=t

Play Video

Cite This Article
Kim, D. H., Cui, L., Seo, H., Joo, H. J., Choi, S., Lim, D., Lee, K. B. Fabrication of Gradient Nanopattern by Thermal Nanoimprinting Technique and Screening of the Response of Human Endothelial Colony-forming Cells. J. Vis. Exp. (137), e57661, doi:10.3791/57661 (2018).

View Video