Summary

הגישה קומבינטורית תא בודד כדי לאפיין את מולקולרית והטרוגניות Immunophenotypic של גזע האדם ואוכלוסיות קדמון

Published: October 25, 2018
doi:

Summary

תפזורת ג’ין ביטוי מדידות ענן תא בודד הבדלים באוכלוסיות הטרוגניות תא. כאן, אנו מתארים את פרוטוקול עבור ביטוי מפענוח ואינדקס איך החד-תאיים מיון על-ידי Florescence מופעל התא מיון (FACS) יכול להיות משולב על הטרוגניות, immunophenotypically מאפיינות אוכלוסיות תאים נפרדים מולקולרי.

Abstract

Immunophenotypic אפיון וניתוח מולקולרית זמן רב השתמשו ניסחו הטרוגניות ולהגדיר אוכלוסיות תאים נפרדים. FACS הוא מיסודו assay מתא בודד, אולם לפני ניתוח מולקולרית, תאי היעד מבודדים לעיתים קרובות פרוספקטיבי בצובר, ובכך לאבד רזולוציה תא בודד. תא בודד מפענוח ביטוי מספק אמצעים כדי להבין את ההבדלים מולקולרי בין תאים בודדים באוכלוסיות הטרוגניות תא. בניתוח תא בכמות גדולה overrepresentation מסוג תאים נפרדים התוצאה הטיות occlusions של אותות מתאי נדיר עם חשיבות ביולוגית. על ידי ניצול FACS אינדקס מיון מצמידים ניתוח ביטוי גנטי מתא בודד, אוכלוסיות יכול ייחקרו ללא האובדן של תא בודד רזולוציה בזמן תאים עם ביטוי סמן משטח תאים ביניים גם נלכדים, המאפשרת הערכת הרלוונטיות של הביטוי סמן משטח רציף. כאן, אנו מתארים גישה המשלבת שעתוק במהופך תא בודד PCR (RT-qPCR) וסטטיסטי FACS אינדקס מיון במקביל לאפיין את מולקולרית והטרוגניות immunophenotypic בתוך התא אוכלוסיות.

לעומת שיטות רצף של RNA מתא בודד, השימוש qPCR עם הגברה ביעד מסוים מאפשר למדידות חזקים של הפרוטוקולים נמוך-שפע עם פחות תקלות, בזמן זה הוא לא מבולבל על ידי נושאים הקשורים לתא וריאציות בלקריאה עומק. יתר על כן, על-ידי ישירות מיון אינדקס חד-תאים לתוך פירוק מאגר בשיטה זו, מאפשר cDNA סינתזה הגברה קדם ביעד מסוים שיש לבצע צעד גם לגבי המתאם של חתימות מולקולרית נגזר לאחר מכן עם משטח תא סמן ביטוי. הגישה המתוארת פותחה כדי לחקור hematopoietic חד-תאים, אך גם שימשו בהצלחה על סוגי תאים אחרים.

לסיכום, הגישה המתוארים בזאת מאפשרת מדידה רגיש של mRNA הביטוי של הגנים שנבחרו מראש עם האפשרות על פאנל לפתח פרוטוקולים עבור בידוד פוטנציאליים עוקבות של subpopulations מולקולרי ייחודי.

Introduction

כל תא דם בודדים הוא האמין להתגורר בהיררכיה של הסלולר, שבו תאי גזע טופס השיא על סדרת מחויב יותר ויותר אבות ביניים, כי בסופו של דבר סופני להבדיל לתוך התאים אפקטור הסופי נושא ספציפי תפקודים ביולוגיים1. רוב הידע על איך תא גזע מערכות מאורגנות נוצר במערכת hematopoietic, בעיקר בגלל היכולת לבודד פרוספקטיבי אוכלוסיות hematopoietic ברורים מאוד מועשר בתאי גזע או אבות שונים2 על-ידי מיון FACS. זו אפשרה עבור רבים של אוכלוסיות אלה כדי להיות מנותח באופן פונקציונלי או מולקולרי, בעיקר דרך ביטוי גנים פרופילים3,4. אולם כאשר ניתוח ביטוי גנים של צובר אוכלוסיות הבדלים אינדיבידואליים בין התאים שהגוף, איבדתי5. לפיכך, חוסר היכולת לזהות וריאציות לתא בתוך התא הטרוגנית שברים עשויים לבלבל את ההבנה שלנו של תהליכים ביולוגיים קריטי אם קבוצות משנה קטנה של תאים חשבון עבור הפונקציה הנגזרת הביולוגי של האוכלוסייה הזאת6, 7. לעומת זאת, החקירה של ג’ין חתימות ביטוי ברזולוציה תא בודד מציעים אפשרות ניסחו הטרוגניות, לעקוף מאפילה השפעות של קבוצות משנה overrepresented של תאים8.

עד כה פותחו פרוטוקולים רבים לניתוח ביטוי גנים מתא בודד; עם כל גישה יש אזהרות משלו. השיטה המוקדמת ביותר היה RNA פלורסנט בחיי עיר הכלאה (RNA-דג), אשר מודד את מספר מוגבל של הפרוטוקולים בכל פעם אבל הוא ייחודי בכך שהוא מאפשר לחקירה של RNA לוקליזציה9,11. שיטות מוקדמות באמצעות PCR qPCR כדי לזהות שיחיד או תעתיקים מעטים מאוד היו גם פיתח12. עם זאת, אלה לאחרונה הוחלפו על-ידי שיטות מבוססות מיקרופלואידיקה אשר ניתן בו זמנית לנתח את הביטוי של מאות תעתיקים בכל תא מאות תאים דרך qPCR, ובכך לאפשר הטרוגניות גבוהה-ממדי באמצעות ניתוח מראש נקבע ג’ין לוחות10,13. לאחרונה טכנולוגיות מבוססות רצפי RNA יש להיות בשימוש נרחב עבור ניתוח תא בודד, ככל אלה תיאורטית יכול למדוד את כל transcriptome של התא ובכך להוסיף מימד גישוש הטרוגניות ניתוח10, 14. ניתוח qPCR Multiplexed ורצף RNA בתא יחיד יש תכונות שונות, ובכך הרציונל לשימוש באחת מהשיטות תלוי השאלה כמו גם מספר התאים באוכלוסיית היעד. תפוקה גבוהה ועלות נמוכה בכל תא יחד עם מאפיינים לא משוחד, גישוש של רצפי RNA בתא יחיד בעת רצוי התא לא ידוע או אוכלוסיות גדולות נחקרות. עם זאת, רצפי RNA בתא יחיד גם מוטה לטובת קביעת רצף תעתיקים שופע גבוהה בתדירות גבוהה יותר, בעוד תעתיקים עם שפע נמוכה נוטים נשירה. זה יכול להוביל נתונים מורכבים במידה ניכרת שמעבירות גבוהה-דרישות על ניתוח bioinformatic לגלות אותות מולקולריים חשוב כי הם לעיתים קרובות עדינים או מוסתרים רעש טכני15. לכן, בשביל לרקמות מאופיין היטב, qPCR תא בודד באמצעות ניתוח שנקבע מראש לוחות פריימר שנבחר עבור גנים חשיבות תפקודית או סמנים מולקולריים יכול לשמש גישה רגיש פשוטה כדי לקבוע את הטרוגניות של אוכלוסייה. עם זאת, יצוין כי לעומת העלות לכל תא RNA בתא יחיד-seq, הוא בדרך כלל גבוה יותר עבור שיטות qPCR תא בודד. כאן, אנו מתארים גישה המשלבת תא בודד RT-qPCR (שונה Teles ג’יי. et al. 16), לאינדקס FACS מיון במקביל17 ו ביואינפורמטיקה ניתוח18 על מנת לאפיין את הטרוגניות המולקולריים immunophenotypic בתוך אוכלוסיות.

בגישה זו, האוכלוסייה תא עניין היא מוכתמת, חד-תאים ממוינים על-ידי FACS ישירות לתוך מאגר פירוק ב 96-ובכן PCR צלחות. בו זמנית, רמות הביטוי של קבוצה נוספת של התא-פני סמני נרשמים לכל תא יחיד במהלך FACS-מיון, שיטה שבה מתייחסים כאל מיון אינדקס. החומר תא lysed לאחר מכן מוגבר וניתח בביטוי הגן של קבוצת גנים שנבחרו עם RT-qPCR, באמצעות פלטפורמה microfluidic. אסטרטגיה זו מאפשרת ניתוח מולקולרית של מיון מתא בודד, כמו גם בו זמנית האפיון תא-פני סמן ביטוי של תא בודד כל. על-ידי ישירות מיפוי מולקולרי ייחודי קבוצות משנה של תאים לביטוי סמני אינדקס ממוינים, subpopulations יכולים להיות מקושרים כדי immunophenotype ספציפי שיכול לשמש לבידוד פוטנציאליים שלהם. השיטה המותווה צעד אחר צעד באיור1. פאנל ג’ין שנקבע מראש עוד תורמת רזולוציה גבוהה יותר של ביטוי גנים יישוב, מאז זה עוקף מדידה של הגנים שופע לא רלוונטי יכול אחרת occlude אותות ביטוי הגן מעודן. יתר על כן, הגברה יעד ספציפיות, שעתוק במהופך צעד אחד, הגברה מאפשרת מדידה חזקים של תעתיקים ביטוי נמוך, כמו גורמי שעתוק או הלא-פולי-adenylated RNAs. חשוב לציין, שיטות qPCR מאפשרים מדידה של mRNA של פיוז’ן חלבונים, אשר חשובים כאשר חוקרים מסוימים במחלות ממאירות19. בסופו של דבר, המספר ממוקד של גנים חקרו, שיעורי הנשירה נמוך, ולא מוגבל הבדלים טכניים בין תאים להפוך שיטה זו נותחו בקלות לעומת שיטות מימד גבוה יותר, כגון RNA בתא יחיד-תת סעיף לפי הפרוטוקול, ניסוי כולו יכול להתבצע, מיון תאי לתוצאות שנותחה, בתוך שלושה ימים, ממציא זה שיטה מסובכת ומהיר עבור ניתוח ביטוי גנטי תא בודד רגיש, תפוקה גבוהה.

Protocol

1. הכנת פירוק לוחות באמצעות ספסל חינם RNA/DNA, להכין מאגר מספיק פירוק וולס 96, עם 10% נוספים, על ידי ערבוב מים חינם נוקלאז µL 390, 17 µL של 10% NP-40, 2.8 dNTP 10 מ מ µL, µL 10 0.1 M DTT, 5.3 µL RNAse מעכב (ראה טבלה של חומרים). מערבולת, ספין מטה. פזר µL 4 פירוק המאגר כדי כל טוב של צלחת PCR טוב 96, לאטום את הצלחות עם …

Representative Results

פרוטוקול המתואר הוא מהיר, שבוצעו בקלות ואמינים ביותר. סקירה כללית של הסידור ניסיוני מוצג באיור1. פרוטוקול כולו, ממיון של חד-תאים, הגברה יעד ספציפיות, מדידות ביטוי גנים, ניתוח ראשוני יכול להתבצע בשלושה ימים. דוגמה של תוצאות שנותחה בדמות מפת החום מייצג ראשונ?…

Discussion

בשנים האחרונות, תא בודד מפענוח הביטוי הפך תוספת רבת ערך כדי להגדיר את הטרוגניות של אוכלוסיות שונות תא23. כניסתו של טכנולוגיות רצף הרנ א תיאורטית מספק אפשרות למדוד את transcriptome שלם של תא, עם זאת, שיטות אלה הן מסובך וריאציות של רצף לתא לבין נשירה. QPCR תא בודד מציע ניתוח רגיש, איתנה של ה…

Disclosures

The authors have nothing to disclose.

Acknowledgements

עבודה זו נתמכת מענקים השוודית החברה לסרטן, המועצה למחקר השבדי, החברה השוודית למחקר רפואי, קרן סרטן ילדות שוודית, קרן Söderberg רגנר, ו קנוט, אליס ולנברג קרן

Materials

CD14 PECY5 eBioscience 15-0149-42 Clone: 61D3
CD16 PECY5 Biolegend 302010 Clone: 3G8
CD56 PECY5 Biolegend 304608 Clone: MEM-188
CD19 PECY5 Biolegend 302210 Clone: HIB19
CD2 PECY5 Biolegend 300210 Clone: RPA-2.10
CD3 PECY5 Biolegend 300310 Clone: HIT3a
CD123 PECY5 Biolegend 306008 Clone: 6H6
CD235A PECY5 BD Pharma 559944 Clone GAR2
CD34 FITC Biolegend 343604 Clone: 561
CD38 APC Biolegend 303510 Clone: Hit2
CD90 PE Biolegend 328110 Clone: 5E10
CD45RA BV421 BD bioscience 560362 Clone: HI100
CD49f Pecy7 eBioscience 25-0495-82 Clone: eBioGOH3
FBS HyClone SV30160.3
PBS HyClone SH30028.02
96-well u-bottom Plate VWR 10861-564
SFEM Stem cell technologies 9650
Penicillin streptomycin HyClone SV30010
TPO Peprotech 300-18
SCF Peprotech 300-07
FLT3L Peprotech 300-19
Falcon Tube 15 mL Sarstedt 62.554.502
Eppendorph tube Sarstedt 72.690.001
CST beads BD 642412
Accudrop Beads BD 345249 6-µm particles 
Adhesive film Clear Thermo scientific  AB-1170
Adhesive film Foil Thermo scientific  AB-0626
96 well PCR plate Axygen PCR-96M2-HS-C
PCR 1.5 mL tube Axygen MCT-150-L-C
T100 PCR cycler BioRad 186-1096
10% NP40 Thermo scientific  85124
10mM dNTP Takara 4030
0.1M DTT Invitrogen P2325
RNAsout Invitrogen 10777-019 RNAse inhibitor
CellsDirect One-Step qRT-PCR Kit Invitrogen 11753-100
Neuclease free water Invitrogen 11753-100 from CellsDirect kit
2X Reaction Mix Invitrogen 11753-100 from CellsDirect kit
SuperScript III RT/Platinum Taq Mix Invitrogen 11753-100 from CellsDirect kit
Platinum Taq DNA Polymerase Invitrogen 10966026
TaqMan Cells-to-CT Control Kit Invitrogen 4386995
Xeno RNA Control Invitrogen 4386995 From TaqMan Cells-to-CT Control Kit
20X Xeno RNA Control Taqman Gene Expression Assay Invitrogen 4386995 From TaqMan Cells-to-CT Control Kit
96.96 Sample/Loading Kit—10 IFCs Fluidigm BMK-M10-96.96
2X Assay Loading Reagent Fluidigm From 96.96 Sample/Loading Kit
20X GE Sample Loading Reagent Fluidigm From 96.96 Sample/Loading Kit
Control line fluid  Fluidigm From 96.96 Sample/Loading Kit
TaqMan Gene Expression Master Mix Applied Biosystems 4369016
BioMark HD Fluidigm BMKHD-BMKHD
96.96 Dynamic Array IFC Fluidigm BMK-M10-96.96GT
Excel Microsoft Microsoft
FlowJo V10 TreeStar TreeStar
Fluidigm real time PCR analysis Fluidigm Fluidigm
CD179a.VPREB1 Thermofisher scientific Hs00356766_g1
ACE Thermofisher scientific Hs00174179_m1
AHR Thermofisher scientific Hs00169233_m1
BCR_ABL.52 Thermofisher scientific Hs03043652_ft
BCR_ABL41 Thermofisher scientific Hs03024541_ft
BMI1 Thermofisher scientific Hs00995536_m1
CCNA2 Thermofisher scientific Hs00996788_m1
CCNB1 Thermofisher scientific Hs01030099_m1
CCNB2 Thermofisher scientific Hs01084593_g1
CCNC Thermofisher scientific Hs01029304_m1
CCNE1 Thermofisher scientific Hs01026535_g1
CCNF Thermofisher scientific Hs00171049_m1
CCR9 Thermofisher scientific Hs01890924_s1
CD10.MME Thermofisher scientific Hs00153510_m1
CD11a Thermofisher scientific Hs00158218_m1
CD11c.ITAX Thermofisher scientific Hs00174217_m1
CD123.IL3RA Thermofisher scientific Hs00608141_m1
CD133.PROM1 Thermofisher scientific Hs01009250_m1
CD151 Thermofisher scientific Hs00911635_g1
CD220.INSR Thermofisher scientific Hs00961554_m1
CD24.HSA Thermofisher scientific Hs03044178_g1
NCOR1 Thermofisher scientific Hs01094540_m1
CD26.DPP4 Thermofisher scientific Hs00175210_m1
CD274 Thermofisher scientific Hs01125301_m1
CD276 Thermofisher scientific Hs00987207_m1
CD32.FCGR2B Thermofisher scientific Hs01634996_s1
CD33 Thermofisher scientific Hs01076281_m1
CD34 Thermofisher scientific Hs00990732_m1
CD344.FZD4 Thermofisher scientific Hs00201853_m1
CD352.SLAMF6 Thermofisher scientific Hs01559920_m1
CD38 Thermofisher scientific Hs01120071_m1
CD4 Thermofisher scientific Hs01058407_m1
CD41.ITGA2B Thermofisher scientific Hs01116228_m1
CD49f.ITGA6 Thermofisher scientific Hs01041011_m1
CD56.NCAM1 Thermofisher scientific Hs00941830_m1
CD9 Thermofisher scientific Hs00233521_m1
CD97 Thermofisher scientific Hs00173542_m1
CD99 Thermofisher scientific Hs00908458_m1
CDK6 Thermofisher scientific Hs01026371_m1
CDKN1A Thermofisher scientific Hs00355782_m1
CDKN1B Thermofisher scientific Hs01597588_m1
CDKN1C Thermofisher scientific Hs00175938_m1
CEBPa Thermofisher scientific Hs00269972_s1
CSF1r Thermofisher scientific Hs00911250_m1
CSF2RA Thermofisher scientific Hs00531296_g1
CSF3RA Thermofisher scientific Hs01114427_m1
E2A.TCF3 Thermofisher scientific Hs00413032_m1
EBF1 Thermofisher scientific Hs01092694_m1
ENG Thermofisher scientific Hs00923996_m1
EPOR Thermofisher scientific Hs00959427_m1
ERG Thermofisher scientific Hs01554629_m1
FLI1 Thermofisher scientific Hs00956711_m1
FLT3 Thermofisher scientific Hs00174690_m1
FOXO1 Thermofisher scientific Hs01054576_m1
GAPDH Thermofisher scientific Hs02758991_g1
GATA1 Thermofisher scientific Hs00231112_m1
GATA2 Thermofisher scientific Hs00231119_m1
GATA3 Thermofisher scientific Hs00231122_m1
GFI1 Thermofisher scientific Hs00382207_m1
HES1 Thermofisher scientific Hs01118947_g1
HLF Thermofisher scientific Hs00171406_m1
HMGA2 Thermofisher scientific Hs00171569_m1
HOXA5 Thermofisher scientific Hs00430330_m1
HOXB4 Thermofisher scientific Hs00256884_m1
ID2 Thermofisher scientific Hs04187239_m1
IGF2BP1 Thermofisher scientific Hs00198023_m1
IGF2BP2 Thermofisher scientific Hs01118009_m1
IKZF1 Thermofisher scientific Hs00172991_m1
IL1RAP Thermofisher scientific Hs00895050_m1
IL2RG Thermofisher scientific Hs00953624_m1
IRF8 Thermofisher scientific Hs00175238_m1
ITGB7 Thermofisher scientific Hs01565750_m1
KIT Thermofisher scientific Hs00174029_m1
Lin28B Thermofisher scientific Hs01013729_m1
LMO2 Thermofisher scientific Hs00153473_m1
LYL1 Thermofisher scientific Hs01089802_g1
Meis1 Thermofisher scientific Hs01017441_m1
mKi67 Thermofisher scientific Hs01032443_m1
MPL Thermofisher scientific Hs00180489_m1
MPO Thermofisher scientific Hs00924296_m1
NFIB Thermofisher scientific Hs01029175_m1
Notch1 Thermofisher scientific Hs01062011_m1
Pten Thermofisher scientific Hs02621230_s1
RAG2 Thermofisher scientific Hs01851142_s1
RPS18 Thermofisher scientific Hs01375212_g1
RUNX1 Thermofisher scientific Hs00231079_m1
Shisa2 Thermofisher scientific Hs01590823_m1
Spi1 Thermofisher scientific Hs02786711_m1
Sterile.IgH Thermofisher scientific Hs00378435_m1
TAL1 Thermofisher scientific Hs01097987_m1
THY1 Thermofisher scientific Hs00264235_s1
Tim.3.HAVCR2 Thermofisher scientific Hs00958618_m1
VWF Thermofisher scientific Hs00169795_m1

References

  1. Seita, J., Weissman, I. L. Hematopoietic stem cell: Self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med. 2 (6), 640-653 (2010).
  2. Orkin, S. H., Zon, L. I. Hematopoiesis: An evolving paradigm for stem cell biology. Cell. 132 (4), 631-644 (2008).
  3. Ye, F., Huang, W., Guo, G. Studying hematopoiesis using single-cell technologies. Journal of Hematology & Oncology. 10, 27 (2017).
  4. Hoppe, P. S., Coutu, D. L., Schroeder, T. Single-cell technologies sharpen up mammalian stem cell research. Nature Cell Biology. 16 (10), 919-927 (2014).
  5. Wills, Q. F., et al. Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments. Nature Biotechnol. 31 (8), 748-752 (2013).
  6. Velten, L., et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol. 19 (4), 271-281 (2017).
  7. Wilson, N. K., Nicola, K., et al. Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell. 16 (6), 712-724 (2015).
  8. Saliba, A. E., Westermann, A. J., Gorski, S. A., Vogel, J. Single-cell RNA-seq: Advances and future challenges. Nucleic Acids Research. 42 (14), 8845-8860 (2014).
  9. Femino, A. M., Fay, F. S., Fogarty, K., Singer, R. H. Visualization of Single RNA Transcripts in Situ. Science. 280 (5363), 585-590 (1998).
  10. Kalisky, T., et al. A brief review of single-cell transcriptomic technologies. Briefings in Functional Genomics. , elx019 (2017).
  11. Crosetto, N., Bienko, M., van Oudenaarden, A. Spatially resolved transcriptomics and beyond. Nature Reviews Genetics. 16, 57 (2014).
  12. Bengtsson, M., Ståhlberg, A., Rorsman, P., Kubista, M. Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. Genome Research. 15 (10), 1388-1392 (2005).
  13. Bengtsson, M., Hemberg, M., Rorsman, P., Ståhlberg, A. Quantification of mRNA in single cells and modelling of RT-qPCR induced noise. BMC Molecular Biology. 9 (1), 63 (2008).
  14. Picelli, S., et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nature Methods. 10, 1096 (2013).
  15. Tung, P. -. Y., et al. Batch effects and the effective design of single-cell gene expression studies. Scientific Reports. 7, 39921 (2017).
  16. Teles, J., Enver, T., Pina, C. Single-cell PCR profiling of gene expression in hematopoiesis. Methods in Molecular Biology. , 21-42 (2014).
  17. Hayashi, T., et al. Single-cell gene profiling of planarian stem cells using fluorescent activated cell sorting and its "index sorting" function for stem cell research. Development, Growth, & Differentiation. 52 (1), 131-144 (2010).
  18. Lang, S., et al. SCExV: A webtool for the analysis and visualisation of single cell qRT-PCR data. BMC Bioinformatics. 16 (1), 320 (2015).
  19. de Klein, A., et al. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature. 300 (5894), 765-767 (1982).
  20. . indexed-sorting Available from: https://github.com/FlowJo-LLC/indexed-sorting (2016)
  21. Warfvinge, R., et al. Single-cell molecular analysis defines therapy response and immunophenotype of stem cell subpopulations in CML. Blood. 129 (17), 2384-2394 (2017).
  22. Nestorowa, S., et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood. 128 (8), e20-e31 (2016).
  23. Breton, G., et al. Human dendritic cells (DCs) are derived from distinct circulating precursors that are precommitted to become CD1c+ or CD141+ DCs. The Journal of Experimental Medicine. 213 (13), 2861-2870 (2016).
  24. Alberti-Servera, L., et al. Single-cell RNA sequencing reveals developmental heterogeneity among early lymphoid progenitors. The EMBO Journal. 36 (24), 3619-3633 (2017).
  25. Giustacchini, A., et al. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia. Nature Medicine. 23, 692 (2017).
  26. Hansmann, L., Han, A., Penter, L., Liedtke, M., Davis, M. M. Clonal expansion and interrelatedness of distinct B-lineage compartments in multiple myeloma bone marrow. Cancer Immunology Research. 5 (9), 744-754 (2017).
  27. Psaila, B., et al. Single-cell profiling of human megakaryocyte-erythroid progenitors identifies distinct megakaryocyte and erythroid differentiation pathways. Genome Biology. 17 (1), 83 (2016).
  28. Schulte, R., et al. Index sorting resolves heterogeneous murine hematopoietic stem cell populations. Experimental Hematology. 43 (9), 803-811 (2015).
check_url/57831?article_type=t

Play Video

Cite This Article
Sommarin, M. N., Warfvinge, R., Safi, F., Karlsson, G. A Combinatorial Single-cell Approach to Characterize the Molecular and Immunophenotypic Heterogeneity of Human Stem and Progenitor Populations. J. Vis. Exp. (140), e57831, doi:10.3791/57831 (2018).

View Video