Summary

从活细胞中的单端粒表达的癌症细胞克隆的生成, 以可视化含有端粒重复的 rna terra

Published: January 17, 2019
doi:

Summary

在这里, 我们提出了一个协议, 以生成包含 ms2 序列标记在单个亚端粒的癌细胞克隆。这种方法, 依靠 ms2-gfp 系统, 实现了端粒重复 rna (terra) 的内源性转录记录的可视化表达从一个端粒表达在活细胞中。

Abstract

端粒被转录, 导致端粒重复编码 rna (terra), 这已被建议在端粒生物学中发挥重要作用, 包括异染色质的形成和端粒长度的稳态。最近的发现表明, terra 分子也与内部染色体区域相互作用, 以调节小鼠胚胎干细胞 (es) 细胞的基因表达。根据这一证据, rna 荧光原位杂交 (rnaa-fish) 分析表明, 只有一部分 terra 转录记录定位在染色体末端。更好地了解 terra 分子的动力学将有助于确定其功能和作用机制。在这里, 我们描述了一种方法, 标签和可视化单端粒 terra 转录在癌细胞使用 ms2-gfp 系统。为此, 我们提出了一个协议, 以产生稳定的克隆, 使用 ags 人类胃癌细胞系, 包含 ms2 序列集成在一个单一的亚端粒。从 ms2 标记的端粒中转录 terra 的结果是 ms2 标记的 terra 分子的表达, 这些分子在 ms2 rna 结合蛋白融合蛋白与 gfp (ms2-gfp) 共表达后, 通过活细胞荧光显微镜进行了可视化。这种方法使研究人员能够研究癌细胞中单端粒 terra 分子的动力学, 并可应用于其他细胞系。

Introduction

长非编码 rna terra 从染色体的亚端粒区域转录, 其转录向染色体末端进行, 在端粒重复道1,2内终止。因此, terra 记录由 5 ‘ 端的亚端粒衍生序列组成, 并以端粒重复终止 (脊椎动物中的 uuaggg)3。提出了 terra 的重要作用, 包括端粒4、5、dna 复制 6的异染色质形成, 促进染色体末端 7,8 同源重组,9、调节端粒结构10和端粒长度稳态2,11,12,13。此外, terra 转录与许多体外位点相互作用, 以调节小鼠胚胎干细胞 (es) 中广泛的基因表达。根据这些证据, rna荧光原位杂交 (rna-fish) 分析表明, 只有一部分 terra 转录记录定位端粒1,2,15。此外, 据报道, terra 在小鼠细胞2,16的 x 和 y 染色体处形成核聚集物。这些发现表明, terra 记录在细胞核内经历了复杂的动态。了解 terra 分子的动力学将有助于确定其功能和作用机制。

ms2-gfp 系统已被广泛用于可视化来自不同生物体的活细胞中的 rna 分子 17,18.该系统以前曾被用来标记和可视化单端粒 terra 分子在酿酒师12,19。利用该系统, 最近显示酵母 terra 转录转录位在细胞质内的后二氧化转变阶段, 这表明 terra 可能会发挥核外功能20。我们最近使用 ms2-gfp 系统研究癌细胞21中的单端粒 terra 转录.为此, 我们使用 crispr/cas9 基因组编辑工具将 ms2 序列集成在单个端粒 (端粒 15q, 以下为 telq 15q) 上, 并获得了表示 ms2 标记内生 t15q terra (terra-ms2 克隆) 的克隆。gfp 熔融 ms2 rna 结合蛋白 (ms2-gfp) 的共表达, 可识别并结合 ms2 rna 序列, 从而实现活细胞21中单端粒 terra 转录的可视化.本文所述协议的目的是详细描述生成 terra-ms2 克隆所需的步骤。

为了生成 terra-ms2 克隆, ms2 盒被集成在端粒15q 的亚端粒区域内, 位于 terra 启动子区域和转录起始位点的下游。ms2 盒式磁带含有由 lox-p 位点两侧的新霉素耐药基因, 其在近端粒15q 上的整合是使用 crispr/cas9 系统22进行的。经转染 ms2 盒后, 选择单克隆, 用 pcr、dna 测序和南方印迹验证盒的亚端粒积分。阳性克隆感染了表达 crec 的腺病毒, 以便删除盒式磁带中的选择标记, 只在近端粒15q 留下一个 ms2 序列和一个 lox-p 位点。通过 rt-qpcr 验证了 tel15q 中 ms2 标记的 terra 转录的表达。最后, ms2-gfp 融合蛋白通过逆转录病毒感染在 terra-ms2 克隆中表达, 以便用荧光显微镜显示 ms2-terra 转录。使用端粒重复特异性探针 121523可通过 rna-fish 和活细胞成像快速检测 terra 记录。这些方法提供了关于 terra 分子在单个细胞分辨率下的总种群定位的重要信息。在单个亚端粒生成含有 ms2 序列的克隆, 将使研究人员能够研究活细胞中单端粒 terra 转录的动力学, 这将有助于确定 terra 的功能和作用机制。

Protocol

(一)新霉素耐药克隆的选择 在哈姆赫-12k (kaighn) 培养基中生长 ags 细胞, 辅以10% 的胎儿牛血清 (fbs)、2 mm l-谷氨酰胺、青霉素 (培养基每毫升0.5 单位) 和链霉素 (每毫升介质 0.2μg) 和 5% co2.将细胞与 sgrnams9 表达载体和 ms2 盒式磁带以50-60 的融合方式转染, 以1:10 摩尔比21。注: 在并行实验中, 通过转染 transfection 表达向量 (即cas9-gfp 矢量) 来验证转染效率。应达到…

Representative Results

图 11表示实验策略的概述。该协议的主要步骤和在 ags 单元中生成 terra-ms2 克隆的指示性时间表如下图所示 (图 1a)。在第1天, 用 ms2 盒式磁带和 sgrna/cas9 表示向量转染6孔的多个井 (如图 1b 所示)。在 cas9 nickase 表示 px335 载体中克隆了两个不同的近端粒15q 特异性引导 rna 序列,…

Discussion

在本文中, 我们提出了一种方法来生成人类癌症细胞克隆包含 ms2 序列集成在亚端粒15q。利用这些克隆体, 用荧光显微镜通过 ms2-gfp 融合蛋白的共表达检测从近端粒15q 转录的 ms2 标记的 terra 分子。这种方法使研究人员能够研究在活细胞21中的单个端粒表达的 terra 的动力学。在该协议中, 在 ags 细胞系中选择 terra-ms2 克隆, 这代表了一个有趣的模型系统来研究 terra, 因为 terra 表达在人?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢特伦托大学 ciboi 先进成像设施的工作人员和维也纳 max f. perutz 实验室 (mfpl) 的生物光学光学显微镜设施的工作人员。导致这些成果的研究得到了 Mahlke-Obermann 基金会和欧洲联盟根据609431欧盟赠款协议进行的第七个研究、技术开发和示范框架方案的资助。欧共体得到意大利教育大学和研究部 (miur) 的 rita levi montalcini 研究金的支持。

Materials

AGS cells Gift from Christian Baron (Université de Montréal).
F12K Nut Mix 1X GIBCO 21127022 Culturing medium for AGS cells
L-Glutamine  CORNING MT25005CI Component of cell culturing medium
Penicillin Streptomycin Solution CORNING 30-002-CI Component of cell culturing medium
Fetal Bovine Serum Sigma Aldrich F2442 Component of cell culturing medium
DMEM 1X GIBCO 21068028 culturing medium for phoenix cell
CaCl2 Sigma Aldrich C1016 used in phoenix cell transfection
HEPES Sigma Aldrich H3375 used in phoenix cell transfection (HBS solution)
KCl Sigma Aldrich P9333 used in phoenix cell transfection (HBS solution)
Dextrose Sigma Aldrich D9434 used in phoenix cell transfection (HBS solution)
NaCl Sigma Aldrich S7653 used in phoenix cell transfection (HBS solution) and retrovirus precipitation
Na2HPO4 Sigma Aldrich S3264 used in phoenix cell transfection (HBS solution)
TRYPSIN EDTA SOLUTION 1X CORNING 59430C used in cell split
DPBS 1X GIBCO 14190250 Dulbecco's Phosphate Buffered Saline
DMSO Sigma Aldrich D8418 Component of cell freezing medium (80% FBB and 20% DMSO)
G-418 Disulphate Formedium G4185 selection drug for 
Gelatin solution Bioreagent Sigma Aldrich G1393 cotaing of 96 well DNA plate and freezing plate
Tris-base Fisher BioReagents 10376743 Component of Cell lysis buffer for genomic DNA extraction
EDTA Sigma Aldrich E6758 Component of Cell lysis buffer for genomic DNA extraction
SDS Sigma Aldrich 71729 Component of Cell lysis buffer for genomic DNA extraction
Proteinase K Thermo Fisher AM2546 Component of Cell lysis buffer for genomic DNA extraction
RNAse A Thermo Fisher 12091021 RNA degradation during DNA extraction
Agarose Sigma Aldrich A5304 DNA gel preparation
Atlas ClearSight Bioatlas BH40501 Stain reagent used for detecting DNA and RNA samples in agarose gel
ethanol Fisher BioReagents BP28184 DNA precipitation
Sodium Acetate  Sigma Aldrich 71196 Used for DNA precipitation at a 3M concentration pH5.2
Wizard SV Gel and PCR clean-Up system Promega A9282 Extraction of PCR fragments from agarose gel during PCR screening of neomycin positive clones
Trizol AMBION 15596018 Organic solvent used for RNA extraction
Dnase I THERMO SCIENTIFIC 89836 degradation of genomic DNA from RNA 
dNTPs mix Invitrogen 10297018 used in RT and PCR reactions
DTT Invitrogen 707265ML used in RT reactions
diethyl pyrocarbonate Sigma Aldrich D5758 used to inactivate RNAses in water (1:1000 dilution)
Ribolock Thermo Fisher EO0381 RNase inhibitor
MOPS Sigma Aldrich M9381 preparation of RNA gel
Paraformaldehyde Electron Microscopy Sciences 15710 preparation of denaturating RNA gel (1% PFA in 1x MOPS)
Superscript III Reverse transcriptase Invitrogen 18080-093 Retrotranscription reaction
Pfu DNA polymerase (recombinant) Thermo Scientific EP0501 PCR reaction
2X qPCRBIO SyGreen Mix Separate-ROX PCR BIOSYSTEMS PB 20.14 qPCR reaction
Cre-GFP adenovirus https://medicine.uiowa.edu/vectorcore 1174-HT used to infect TERRA-MS2 clones in order to remove the neomycn gene
Sodium Butyrate Sigma Aldrich B5887 used to promote retrovirus particles production in phoenix cells
PEG8000 Sigma Aldrich 89510 Precipitation of retrovirus partcles
35µ-Dish Glass Bottom Ibidi 81158 used in live cell imaging analyses of TERRA-MS2 clones

References

  1. Azzalin, C. M., Reichenbach, P., Khoriauli, L., Giulotto, E., Lingner, J. Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science. 318 (5851), 798-801 (2007).
  2. Schoeftner, S., Blasco, M. A. Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nature Cell Biology. 10 (2), 228-236 (2008).
  3. Diman, A., Decottignies, A. Genomic origin and nuclear localization of TERRA telomeric repeat-containing RNA: from Darkness to Dawn. FEBS Journal. , (2017).
  4. Arnoult, N., Van Beneden, A., Decottignies, A. Telomere length regulates TERRA levels through increased trimethylation of telomeric H3K9 and HP1alpha. Nature Structural & Molecular Biology. 19 (9), 948-956 (2012).
  5. Montero, J. J., et al. TERRA recruitment of polycomb to telomeres is essential for histone trymethylation marks at telomeric heterochromatin. Nature Communications. 9 (1), 1548 (2018).
  6. Beishline, K., et al. CTCF driven TERRA transcription facilitates completion of telomere DNA replication. Nature Communications. 8 (1), 2114 (2017).
  7. Arora, R., et al. RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nature Communications. 5, 5220 (2014).
  8. Balk, B., et al. Telomeric RNA-DNA hybrids affect telomere-length dynamics and senescence. Nature Structural & Molecular Biology. 20 (10), 1199-1205 (2013).
  9. Graf, M., et al. Telomere Length Determines TERRA and R-Loop Regulation through the Cell Cycle. Cell. 170 (1), 72-85 (2017).
  10. Lee, Y. W., Arora, R., Wischnewski, H., Azzalin, C. M. TRF1 participates in chromosome end protection by averting TRF2-dependent telomeric R loops. Nature Structural & Molecular Biology. , (2018).
  11. Moravec, M., et al. TERRA promotes telomerase-mediated telomere elongation in Schizosaccharomyces pombe. EMBO Reports. 17 (7), 999-1012 (2016).
  12. Cusanelli, E., Romero, C. A., Chartrand, P. Telomeric noncoding RNA TERRA is induced by telomere shortening to nucleate telomerase molecules at short telomeres. Molecular Cell. 51 (6), 780-791 (2013).
  13. Moradi-Fard, S., et al. Smc5/6 Is a Telomere-Associated Complex that Regulates Sir4 Binding and TPE. PLoS Genetics. 12 (8), e1006268 (2016).
  14. Chu, H. P., et al. TERRA RNA Antagonizes ATRX and Protects Telomeres. Cell. 170 (1), 86-101 (2017).
  15. Lai, L. T., Lee, P. J., Zhang, L. F. Immunofluorescence protects RNA signals in simultaneous RNA-DNA FISH. Experimental Cell Research. 319 (3), 46-55 (2013).
  16. Zhang, L. F., et al. Telomeric RNAs mark sex chromosomes in stem cells. Genetics. 182 (3), 685-698 (2009).
  17. Gallardo, F., Chartrand, P. Visualizing mRNAs in fixed and living yeast cells. Methods in Molecular Biology. 714, 203-219 (2011).
  18. Querido, E., Chartrand, P. Using fluorescent proteins to study mRNA trafficking in living cells. Methods in Cell Biology. 85, 273-292 (2008).
  19. Cusanelli, E., Chartrand, P. Telomeric noncoding RNA: telomeric repeat-containing RNA in telomere biology. Wiley Interdisciplinary Reviews: RNA. 5 (3), 407-419 (2014).
  20. Perez-Romero, C. A., Lalonde, M., Chartrand, P., Cusanelli, E. Induction and relocalization of telomeric repeat-containing RNAs during diauxic shift in budding yeast. Current Genetics. , (2018).
  21. Avogaro, L., et al. Live-cell imaging reveals the dynamics and function of single-telomere TERRA molecules in cancer cells. RNA Biology. , 1-10 (2018).
  22. Ran, F. A., et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 154 (6), 1380-1389 (2013).
  23. Yamada, T., et al. Spatiotemporal analysis with a genetically encoded fluorescent RNA probe reveals TERRA function around telomeres. Scientific Reports. 6, 38910 (2016).
  24. Deng, Z., et al. Formation of telomeric repeat-containing RNA (TERRA) foci in highly proliferating mouse cerebellar neuronal progenitors and medulloblastoma. Journal of Cell Science. 125 (Pt 18), 4383-4394 (2012).
  25. Casini, A., et al. A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nature Biotechnology. 36 (3), 265-271 (2018).
  26. Nergadze, S. G., et al. CpG-island promoters drive transcription of human telomeres. RNA. 15 (12), 2186-2194 (2009).
  27. Porro, A., et al. Functional characterization of the TERRA transcriptome at damaged telomeres. Nature Communications. 5, 5379 (2014).
  28. Farnung, B. O., Brun, C. M., Arora, R., Lorenzi, L. E., Azzalin, C. M. Telomerase efficiently elongates highly transcribing telomeres in human cancer cells. PLoS One. 7 (4), e35714 (2012).
  29. Flynn, R. L., et al. Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science. 347 (6219), 273-277 (2015).
  30. Scheibe, M., et al. Quantitative interaction screen of telomeric repeat-containing RNA reveals novel TERRA regulators. Genome Research. 23 (12), 2149-2157 (2013).
  31. Bolland, D. J., King, M. R., Reik, W., Corcoran, A. E., Krueger, C. Robust 3D DNA FISH using directly labeled probes. Journal of Visualized Experiments. (78), (2013).
  32. Masui, O., et al. Live-cell chromosome dynamics and outcome of X chromosome pairing events during ES cell differentiation. Cell. 145 (3), 447-458 (2011).
check_url/58790?article_type=t

Play Video

Cite This Article
Avogaro, L., Oss Pegorar, C., Bettin, N., Cusanelli, E. Generation of Cancer Cell Clones to Visualize Telomeric Repeat-containing RNA TERRA Expressed from a Single Telomere in Living Cells. J. Vis. Exp. (143), e58790, doi:10.3791/58790 (2019).

View Video