Summary

农杆菌根瘤菌--马铃薯介导的马铃薯转化与葡萄染色诱导素基因的启动子活性

Published: March 29, 2019
doi:

Summary

在这里, 我们提出了两个协议, 以改造马铃薯植物。农杆菌的转化导致一个完整的转基因植物, 而农杆菌根状茎产生转基因毛状根在野生类型的芽, 可以自我繁殖。然后, 我们通过 GUS 染色检测转化根系中的启动子活性。

Abstract

农杆菌是获得转基因植物最广泛使用的方法之一, 因为它有能力将自己的 t-dna 转移并整合到植物的基因组中。在这里, 我们提出了两个转化系统, 基因改造马铃薯 (刺过木豆)植物。在肿瘤转化过程中, 叶子被感染, 转化后的细胞被选择, 一个新的完整的转化植物在18周内被再生。在根瘤菌转化过程中, 茎通过注射针头感染细菌, 用红色荧光标记检测新出现的转化的多毛根, 去除未转化的根。在5-6 内, 所产生的植物是一种野生类型的芽的组合, 具有完全发育的转化的毛状根。为了增加生物量, 转化后的毛状根系可以被切除和自我繁殖。我们应用这两种农杆菌介导的转化方法来获得根系表达 gus 记者基因驱动的亚素生物合成基因启动子。提供 GUS 染色程序, 并允许细胞定位的启动子诱导。在这两种方法中, 转化后的马铃薯根系在亚皮内皮和外真皮中都显示了 GUS 染色, 此外,在 a. 根瘤菌转化的根系中, 在侧根的出现中也检测到了 gus 活性。这些结果表明, a. 根瘤菌可以成为研究根系中表达的基因的快速替代工具。

Introduction

除了经济利益, 转基因植物的产生有其自身的相关性, 在研究中可以证明基因的最终功能, 并更好地了解植物的生理和发育。植物 DNA 插入最广泛使用的方法是农杆菌介导的转化。农杆菌通过其诱导肿瘤 (ti) 质粒的作用, 能够在许多植物物种的受感染组织中产生冠状凝块。质粒包含一个 t-dna 区域, 具有一组基因, 这些基因将被整合到植物基因组中, 并诱导组织去分化 1,2。转基因在 T-DNA 内交换这些基因, 使植物进行了特定的修饰, 避免了表型效应3。为了促进对 T-DNA 的转基因克隆, T-DNA 区域在一个称为二元质粒的独立质粒中被切除, 而 Ti 质粒 (允许 T-DNA 转移和插入机制的毒力基因) 的其余基因则被切除。放置在辅助质粒中。对于植物生物技术研究来说, 由a. tumefaciens进行改造有几个优点: 它不需要昂贵的设备, 能够产生稳定和短暂的植物转化, 并且将少量的基因副本集成到4号染色体.然而, 对于大多数植物, 但不是拟南芥,建立稳定的转化物需要植物再生从一个单一或几个细胞使用外源植物激素, 使这一过程费力和耗时。根瘤菌也能够改变植物基因组, 产生毛茸茸的根或不定根在感染部位由于表达的滚动(根位点) 基因编码在根诱导 (ri) 质粒 5.虽然研究较少, 但根瘤菌也被用于获得转基因根。在这种情况下, a. 根瘤菌在 ri 质粒中含有原始的 t-dna, 并在二元质粒中含有第二个携带转基因的 t-dna。当感染部位在茎或下胚轴时, 可以获得一种复合植物, 新的多毛转基因根从野生类型的芽中出现。另外, 毛状转化的根可以在有碳源输入的培养基中在体外自主生长。当根是靶器官时, 使用根质体而不是肿瘤产生转基因组织的方法正在变得越来越重要, 因为不需要植物再生, 因此它的速度更快, 成本更低。以往的研究已经证明了这种方法, 用于根特异性基因的表型表征 6,7,8,9

根据联合国粮食及农业组织 (FAO) 的数据, 马铃薯(Solanum tuberom而d) 是世界上第四大最重要的作物, 因为块茎作为维生素的良好来源, 对人类消费具有营养意义和矿物。因此, 马铃薯已成为农业生物技术的焦点, 也被认为是遗传和发展研究的良好生物模式1011.马铃薯转化通过对亚素和蜡生物合成所涉及的基因的表征, 对亚化组织的分子机制有显著的贡献, 121314 ,15,16, 17, 亚素单体运输18和转录条例19。亚铁蛋白烯基转移酶基因Fht是这些具有特征的生物合成基因之一;其下调对表皮保护的影响很大, 这与马铃薯块茎14中的亚、酸和蜡的发酵酯率大幅下降有关。此外, 在拟南芥的根部和种子中, 其假定的正位词 (asft/rwp1) 的敲除也证明了其在、核素20、21中生成烷基发酵的作用。在马铃薯中, Fht转录记者行和 FHT 抗体分别表明启动子活性和蛋白质分别位于外皮、内皮、phellogn 衍生物和受伤组织15

在这项工作中, 我们详细介绍了一个协议, 使用a. 根瘤菌生产转基因毛状根, 保存在野生类型的芽, 产生复合马铃薯植物, 或切除在体外自主生长。我们还提供了使用a. tumefaciens获得完整转基因马铃薯植物的协议。作为一个案例研究, 用相同的二元载体转化的a. 根瘤菌a. tumefaciens 被用来获得根系与fht启动子驱动 gus 记者基因的表达。报告并比较结果。

Protocol

从 Horn 等人的研究中对 a. 根瘤菌转化协议进行了调整和修改, 所测试的基因型为块茎.对 Banerjee 等人进行了 a. tumefaciens 转化协议的改编和修改, 所测试的基因型为块茎菌(Cv. désirée)和刺五加. 图1和图 2分别总结了这两个过程的主要步骤。 请注意:在进行体外<…

Representative Results

根瘤菌-介导的马铃薯转化 在这篇手稿中, 提出了逐步建立的程序, 以获得转化根与 a. 根瘤菌。图 1概述了该过程, 总共需要大约 5-6 (从注射a. 根瘤菌到获得完全发育的多毛根)。然后, 该植物可以作为一种复合 (野生类型的芽, 转基因根) 或转基因毛状根克隆可以…

Discussion

在马铃薯中, 获得稳定完整转基因植物的最常见系统使用农杆菌菌株的转化, 这些菌株需要利用外源植物激素进行器官生成。尽管基于农杆菌的协议有可能整合非 t-dna 载体序列 25, 但这种方法仍然是最简单、成本更低的方法, 可以改造马铃薯植物。在过去的几年里, 人们对a. 根瘤菌介导的转化的兴趣引起了研究人员的关注, 因为它允许在比使用a. 肿瘤更短…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了 innovo y Ciencia 部长 (AGL2009-13745, FPI 向 PB 提供的赠款)、经济和竞争事务部的赠款和 FEDER 的资助 (AGLUS-36725, AGL2015-675-C2-R) 和 Girona 大学 (向 SF 提供博士补助金, 并向 sf 提供博士赠款)单一/)。提交人感谢 Inge Broer 博士 (德国罗斯托克大学土地使用研究所) 和 Saloméprat 博士 (西班牙马德里国家生物技术中心) 提供了 a. Rhizogenes 和a. tumefaciens 菌株,并提供了 Marçal Soler 博士和 Anna Plasencia 博士在启动a.根瘤菌转化实验方面得到的帮助和支持 (Toulouse III Paul Sabatier 大学-CNRS, 植物研究实验室, Castanet tolosan,法国)。作者感谢 Sara Gómez (UdG、Girona 的 Biologia 省、Girona) 在开展实验室工作和照料植物方面提供的宝贵协助, 并感谢 Ferran Fontdecaba 和 Carla Sánchez 在进行一些实验时提供了协助。他们的最终学位项目。

Materials

Acetone

Panreac

1.310.071.21

Acetosyringone

Acros

115540050

Aquarium pump

Prodac

MP350

Autoclave

Ragpa Strelimatic

Bacteriological agar

Lab Conda

1800

BAP

Duchefa

B0904

Beef extract

Lab Conda

1700

Plant growing cabinet

Nuaire

Carbenicillin

Duchefa

C0109

Cefotaxime sodium

Duchefa

C0111

DMSO

Merck

1029310161

Ecotron infors

HT

29378

Ethanol

Merck

1,009,831,011

Falcon tube

Control tecnica

CFT011500

Ferricyanate

Sigma

101001081

Ferrocyanate

Sigma

100979088

Flask (8.06 cm diameter and 11.3 cm height) and plastic lid for in vitro culture

Apiglass

ref16

GA3

Sigma

G7645

Gamborg B5 media

Duchefa

G0210

Gelrite

Duchefa

G1101

Glucosa

Sigma

G5767

Kanamycin

Sigma

K1377

Leukopor tape

BSN Leukopor

BDF47467

Lupe

Wild-Heerbrugg

M420

Magnetic shaker

Agimatic

7000243

MES hydrate

Sigma

M2933-25G

MgSO4

Panreac

131404

Microscope

Olympus

Minufugue centrifugue 5415R

Eppendorf

Murashige and Skoog media

Duchefa

M0254.0050

Na2HPO4

Panreac

131679

NAA

Duchefa

N0903

NaCl

Panreac

131659

NaH2PO4

Sigma

58282

NightSea Stereo

SFA Moonting Adapter

Parafilm

Anorsa

PRFL-001-001

Peptone

Lab Conda

1616

Petri dishes (90 x 14)

Anorsa

200200

pHmetre

Crison

Phytotron

Inkoa

RFTI-R5485

Plant Agar

Duchefa

P1001

Refrigeratot

Liebherr Medline

Rifampicin

Duchefa

R0146

Spectinomycin

Sigma

59007

Spectrophotometer

Shimadzu

Square plates (120 x 120)

Deltalab

200204

Streptomycin

Sigma

S6501

Sucrose

Panreac

131621

Surgical blades

Swann-Morton

201

Surgical needle

NIPRO

015/0204

Triptone

Lab Conda

1612

Triton

Serva

37240

Unimax 1010 shaker

Heidolph

Vacuum

Dinko

x-GlcA (5-Bromo-4-chloro-3-indoxyl-beta-D-glucuronic acid, sodium salt anhydrous)

Biosynth

B-7398

Yeast extract

Lab Conda

1702.00

Zeatin riboside

Sigma

1001042850

References

  1. Gelvin, S. B. Traversing the Cell: Agrobacterium T-DNA’s journey to the host genome. Frontiers in Plant Science. 3, 1-11 (2012).
  2. Lacroix, B., Citovsky, V. The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation. The International Journal of Developmental Biology. 57 (6-8), 467-481 (2013).
  3. Lee, L. Y., Gelvin, S. B. T-DNA binary vectors and systems. Plant Physiology. 146 (2), 325-332 (2008).
  4. Ishida, Y., et al. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacteriumtumefaciens. Nature Biotechnology. 14 (6), 745-750 (1996).
  5. White, F. F., Taylor, B. H., Huffman, G. A., Gordon, M. P., Nester, E. W. Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. Journal of Bacteriology. 164 (1), 33-44 (1985).
  6. Dinh, P. T. Y., Brown, C. R., Elling, A. A. RNA Interference of effector gene Mc16D10L confers resistance against Meloidogyne chitwoodi in Arabidopsis and Potato. Phytopathology. 104 (10), 1098-1106 (2014).
  7. Horn, P., et al. Composite potato plants with transgenic roots on non-transgenic shoots: a model system for studying gene silencing in roots. Plant Cell Reports. 33 (12), 1977-1992 (2014).
  8. Plasencia, A., et al. Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation. Plant Biotechnology Journal. 14 (6), 1381-1393 (2015).
  9. Ron, M., et al. Hairy root transformation using Agrobacteriumrhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiology. 166 (2), 455-469 (2014).
  10. Zhang, W., et al. Development and application of a universal and simplified multiplex RT-PCR assay to detect five potato viruses. Journal of General Plant Pathology. 83 (1), 33-45 (2017).
  11. Almasia, N. I., et al. Successful production of the potato antimicrobial peptide Snakin-1 in baculovirus-infected insect cells and development of specific antibodies. BMC Biotechnology. 17 (1), 1-11 (2017).
  12. Serra, O., et al. Silencing of StKCS6 in potato periderm leads to reduced chain lengths of suberin and wax compounds and increased peridermal transpiration. Journal of Experimental Botany. 60 (2), 697-707 (2009).
  13. Serra, O., et al. CYP86A33-Targeted gene silencing in potato tuber alters suberin composition, distorts suberin lamellae, and impairs the periderm’s water barrier function. Plant Physiology. 149 (2), 1050-1060 (2008).
  14. Serra, O., et al. A feruloyl transferase involved in the biosynthesis of suberin and suberin-associated wax is required for maturation and sealing properties of potato periderm. The Plant Journal. 62 (2), 277-290 (2010).
  15. Boher, P., Serra, O., Soler, M., Molinas, M., Figueras, M. The potato suberin feruloyl transferase FHT which accumulates in the phellogen is induced by wounding and regulated by abscisic and salicylic acids. Journal of Experimental Botany. 64 (11), 3225-3236 (2013).
  16. Serra, O., Chatterjee, S., Figueras, M., Molinas, M., Stark, R. E. Deconstructing a plant macromolecular assembly: chemical architecture, molecular flexibility, and mechanical performance of natural and engineered potato suberins. Biomacromolecules. 15 (3), 799-811 (2014).
  17. Vulavala, V. K. R., et al. Identification of genes related to skin development in potato. Plant Molecular Biology. 94 (4-5), 481-494 (2017).
  18. Landgraf, R., et al. The ABC transporter ABCG1 is required for suberin formation in potato tuber periderm. The Plant Cell. 26 (8), 3403-3415 (2014).
  19. Verdaguer, R., et al. Silencing of the potato StNAC103 gene enhances the accumulation of suberin polyester and associated wax in tuber skin. Journal of Experimental Botany. 67 (18), 5415-5427 (2016).
  20. Molina, I., Li-Beisson, Y., Beisson, F., Ohlrogge, J. B., Pollard, M. Identification of an Arabidopsis feruloyl-coenzyme A transferase required for suberin synthesis. Plant Physiology. 151 (3), 1317-1328 (2009).
  21. Gou, J. Y., Yu, X. -. H., Liu, C. J. A hydroxycinnamoyltransferase responsible for synthesizing suberin aromatics in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. 106 (44), 18855-18860 (2009).
  22. Banerjee, A. K., Prat, S., Hannapel, D. J. Efficient production of transgenic potato (S. tuberosum L. ssp. andigena) plants via Agrobacterium tumefaciens-mediated transformation. Plant Science. 170 (4), 732-738 (2006).
  23. Sunil Kumar, G. B., Ganapathi, T. R., Srinivas, L., Revathi, C. J., Bapat, V. a. Expression of hepatitis B surface antigen in potato hairy roots. Plant Science. 170 (5), 918-925 (2006).
  24. Schmidt, J. F., Moore, M. D., Pelcher, L. E., Covello, P. S. High efficiency Agrobacteriumrhizogenes-mediated transformation of Saponariavaccaria L. (Caryophyllaceae) using fluorescence selection. Plant Cell Reports. 26 (9), 1547-1554 (2007).
  25. Petti, C., Wendt, T., Meade, C., Mullins, E. Evidence of genotype dependency within Agrobacteriumtumefaciens in relation to the integration of vector backbone sequence in transgenic Phytophthorainfestans-tolerant potato. Journal of Bioscience and Bioengineering. 107 (3), 301-306 (2009).
  26. Gaudin, V., Vrain, T., Jouanin, L. Bacterial genes modifying hormonal balances in plants. Plant Physiology and Biochemistry. 32 (1), 11-29 (1994).
  27. Nemoto, K., et al. Function of the aux and rol genes of the Ri plasmid in plant cell division in vitro. Plant Signaling &amp. Behavior. 4 (12), 1145-1147 (2009).
  28. Visser, R. G. F., et al. Expression and inheritance of inserted markers in binary vector carrying Agrobacteriumrhizogenes-transformed potato (Solanumtuberosum L.). Theoretical and Applied Genetics. 78 (5), 705-714 (1989).
  29. Guillon, S., Trémouillaux-Guiller, J., Pati, P. K., Rideau, M., Gantet, P. Hairy root research: recent scenario and exciting prospects. Current Opinion in Plant Biology. 9 (3), 341-346 (2006).
  30. Georgiev, M. I., Agostini, E., Ludwig-Müller, J., Xu, J. Genetically transformed roots: from plant disease to biotechnological resource. Trends in Biotechnology. 30 (10), 528-537 (2012).
  31. Ooms, G., Lenton, J. R. T-DNA genes to study plant development: precocious tuberisation and enhanced cytokinins in A. tumefaciens transformed potato. Plant Molecular Biology. 5 (4), 205-212 (1985).
  32. de Vries-Uijtewaal, E., et al. Fate of introduced genetic markers in transformed root clones and regenerated plants of monohaploid and diploid potato genotypes. TAG. Theoretical and applied genetics. 78 (2), 185-193 (1989).
  33. Bird, D., et al. Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. The Plant Journal: For Cell and Molecular Biology. 52 (3), 485-498 (2007).
  34. Luo, B., Xue, X. Y., Hu, W. L., Wang, L. J., Chen, X. Y. An ABC transporter gene of Arabidopsis thaliana, AtWBC11, is involved in cuticle development and prevention of organ fusion. Plant and Cell Physiology. 48 (12), 1780-1802 (2007).
  35. Panikashvili, D., et al. The Arabidopsis DESPERADO/AtWBC11 transporter is required for cutin and wax secretion. Plant Physiology. 145 (4), 1345-1360 (2007).
  36. Panikashvili, D., et al. The Arabidopsis DSO/ABCG11 transporter affects cutin metabolism in reproductive organs and suberin in roots. Molecular Plant. 3 (3), 563-575 (2010).
  37. Bjelica, A., et al. Fatty acid ω-hydroxylases from Solanum tuberosum. Plant Cell Reports. 35 (12), 2435-2448 (2016).
  38. Ding, Y., et al. Abscisic acid coordinates nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula. The Plant Cell. 20 (10), 2681-2695 (2008).
  39. Isayenkov, S., Mrosk, C., Stenzel, I., Strack, D., Hause, B. Suppression of allene oxide cyclase in hairy roots of Medicagotruncatula reduces jasmonate levels and the degree of mycorrhization with glomus intraradices 1[w]. Plant Physiology. 139 (3), 1401-1410 (2005).
  40. Dalton, D. A., et al. Physiological roles of glutathione S-Transferases in soybean root Nodules 1[C][W][OA]. Plant Physiology. 150 (1), 521-530 (2009).
  41. Limpens, E., et al. RNA interference in Agrobacteriumrhizogenes-transformed roots of Arabidopsis and Medicago truncatula. Journal of Experimental Botany. 55 (399), 983-992 (2004).

Play Video

Cite This Article
Fernández-Piñán, S., López, J., Armendariz, I., Boher, P., Figueras, M., Serra, O. Agrobacterium tumefaciens and Agrobacterium rhizogenes-Mediated Transformation of Potato and the Promoter Activity of a Suberin Gene by GUS Staining. J. Vis. Exp. (145), e59119, doi:10.3791/59119 (2019).

View Video