Summary

在肝炎症和纤维化环境中产生的肝细胞癌的致癌肝细胞诱导正交小鼠模型

Published: September 12, 2019
doi:

Summary

在这里,我们描述了一个临床相关的肝癌小鼠模型的发展,概括了肝细胞癌(HCC)的典型免疫特征。

Abstract

缺乏临床相关动物模型,解决肝细胞癌(HCC)的典型免疫特征,大大阻碍了阐明其基本机制和开发创新的免疫治疗策略。为了开发一种理想的动物模型来概括人类HCC,免疫能力雄性C57BL/6J小鼠首先接受四氯化碳(CCl4)注射以诱导肝纤维化,然后从年轻雄性小鼠获得组织学正常的致癌肝细胞SV40 T抗原(TAg)-转基因小鼠(MTD2)通过精内(ISPL)接种。在青春期接受的雄性小鼠中产生的雄激素在肝脏特异性启动子的控制下启动TAg表达。因此,转移的肝细胞成为癌细胞,在肝纤维化/肝硬化的设置中形成肿瘤质量。这一新颖的模型模仿了人类HCC在肝纤维化/肝硬化背景下的启动和进展,反映了人类HCC的最典型特征,包括免疫功能障碍。

Introduction

肝细胞癌(HCC)是美国(美国)1、2、3类癌症中增加速度最快的类型。每年约有85万新病例被诊断为4,5和70万患者死于这种致命的疾病6,7,8,9,10,使其成为全球癌症相关死亡的第二高原因。HCC的管理包括手术切除,移植,消融,化疗,或全身疗法,如索拉菲尼布11。早期诊断和管理与手术切除或移植有最高的整体生存效益4。不幸的是,大多数患者在后期出现,需要管理与消融,化学代谢或索拉菲尼布12。Sorafenib,一种受体酪氨酸激酶抑制剂(RTKI),于2008年被美国食品和药物管理局批准为治疗不可分离的HCC的唯一系统药物治疗。虽然这种药物只提供了一个适度的增加整体存活率,从7.9个月到10.7个月13,它提供了一个新的治疗策略,可以用来管理HCC。

操纵免疫系统来消除已建立的癌症是癌症研究中一个迅速成长的领域。免疫检查点研究大大推进了癌症治疗中的免疫治疗药物开发15、16。FDA批准使用抗体(Abs)对抗细胞毒性T淋巴细胞抗原4(CTLA-4),程序化细胞死亡蛋白1(PD-1),及其配体PD-L1用于治疗黑色素瘤、肺癌、头颈部癌症和膀胱癌1718,19,20.使用一种或多种抗体治疗高级HCC的单一疗法或联合疗法的临床试验正在进行中,21、22、23和一些试验已显示出良好的结果。2017年,FDA批准加速批准抗PD-1抗体治疗HCC患者,这些患者对索拉菲尼具有抗药性,但该疗法的总体反应率仅为14.3%。其他策略尚未转化为临床实践在这个时候24,25。克服肿瘤诱发的深层免疫耐受性,改善免疫检查点治疗26;预测免疫检查点治疗的疗效;预防免疫相关不良事件;优化管理路线、剂量和频率;并找到有效的治疗方法组合27,28,29都仍然是极具挑战性的任务。

目前,在小鼠模型中,有几种用于诱导HCC的常规方法,根据研究者的特定研究问题30加以利用。化学诱导的HCC小鼠模型与基因毒性化合物模仿损伤引起的恶性。通过HCC细胞系的异位或正位植入的异种移植模型适用于药物筛选。一些转基因小鼠被设计用于研究HCC的病理生理学。表达病毒基因、肿瘤基因和/或生长因子的转基因小鼠能够识别与肝癌有关的途径。由于固有的局限性,这些模型不重述在人类HCC中看到的典型免疫特征,这大大阻碍了阐明潜在的机制和开发创新的免疫治疗策略14 , 15.我们最近创建了一个临床相关的鼠模型。这种新颖的模型不仅模仿人类HCC的启动和进展,而且反映了人类疾病的最典型特征,包括免疫功能障碍。我们具有其生物学和免疫学特征。利用这一新颖的模式,我们探索了治疗HCC31、32、33、34、35、36的各种免疫治疗策略。 37.这个独特的平台使我们能够研究肿瘤诱导免疫耐受机制,并为HCC制定概念验证治疗策略,最终实现临床翻译。

Protocol

注:所有程序,包括动物科目,都已获得密苏里大学IACUC的批准。所有小鼠均按照《实验室动物护理和使用指南》中概述的标准得到人道照顾。以下细胞分离和接种过程应在罩内执行。所有表演者应佩戴标准个人防护设备,以处理小鼠和组织。 1. 肝纤维化和肝硬化与四氯化碳IP注射 (CCl4) 注:参见图1。(CCl4是高度危险的试剂…

Representative Results

从TAg转基因小鼠中分离的致基因肝细胞(图2)通过内注射在野生型小鼠的肝脏中播种(图3)。移植的肝细胞在肝炎症和纤维化设置中成功可靠地生长出具有肿瘤特异性抗原SV40 TAg的正交HCC肿瘤(图4)。 图1:用于准备HC…

Discussion

通过该协议,我们建立了一个可靠和可重复的HCC模型,模仿人类HCC的启动和进展。临床上,许多危险因素相继诱发肝损伤、肝纤维化、肝硬化和HCC的最后阶段。在我们的协议中,CCl4的 IP 注射用于在野生型小鼠中首先产生肝纤维化,这允许随后的致癌肝细胞在肝纤维化设置中形成肿瘤。我们发现,肿瘤形成最成功地发生在CCl4治疗两周后接受肝细胞接种的小鼠身上,而在其他时间点…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作由NIH/NCI R01 CA164335-01A1(K.F.斯塔维利-奥卡罗尔,PI)和NIH/NCI R01CA208396(马克·凯斯特、李广富、凯文·斯塔维利-奥卡罗尔)支持。

Materials

Anesthesia machine VETEQUIP IMPAC6 anesthesia machine for surgery
Butterfly needle BD 8122963 Needle used for liver perfusion
C57BL/6 mice Jackson Lab 000664  mice used in prototol
Carprofen CRESCENT CHEMICAL 20402 carprofen for pain release
Cell Strainer  CORNING REF 431751 Cell strainer, 70µm, for hepatocytes isolation
Centrifuge Beckman Coulter Allegra X-30R centrifuge for cell isolation
Clips  Teleflex Medical REF 523700 Titanium Clips for spleen
Microscope Zeiss Primovert  microscope for cell observation
Mtd2 mice N/A Gift from Dr. William A Held at roswell Park Cancer Institute in 2002, maintained in our lab
Needle BD REF 305109 BD precisionglide needle, 27G x 1/2 (0.4mm x 13mm)
Suture ETHICON J303H coated VICRYL suture
SV40 T Ag antibody Abcam ab16879 anti-SV40 T-antigen antibody for IHC
Syringe BD REF 309626 1 mL TB syringe for cell injection
Trypan blue SIGMA T 8154 Trypan blue solution for cell viability test
Wound clips Reflex reflex9, Part. No. 201-1000 stainless steel wound clips for wound close

References

  1. O’Connor, S., Ward, J. W. Hepatocellular carcinoma – United States. Morbidity and Mortality Weekly Report. 59, 517-520 (2010).
  2. Petrick, J., Kelly, S., Altekruse, S., McGlynn, K., Rosenberg, P. Future of Hepatocellular Carcinoma Incidence in the United States Forecast Through 2030. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 34, 1787-1794 (2016).
  3. Greten, T., Lai, C., Li, G., Staveley-O’Carroll, K. Targeted and Immune-based Therapies for Hepatocellular Carcinoma. Gastroenterology. 156, 510-524 (2019).
  4. Llovet, J., Zucman-Rossi, J., Pikarsky, E., Sangro, B., Schwartz, M., Sherman, M., Gores, G. Hepatocellular Carcinoma. Nature reviews. Disease primers. 2, 16018 (2016).
  5. Ding, X., et al. Precision medicine for hepatocellular carcinoma: driver mutations and targeted therapy. Oncotarget. 8, 55715-55730 (2017).
  6. Colombo, M., Maisonneuve, P. Controlling liver cancer mortality on a global scale: still a long way to go. Journal of Hepatology. 67, 216-217 (2017).
  7. Llovet, J., Burroughs, A., Bruix, J. Hepatocellular carcinoma. Lancet. 362, 1907-1917 (2003).
  8. Parkin, D., Bray, F., Ferlay, J., Pisani, P. Estimating the world cancer burden: Globocan 2000. International Journal of Cancer. 94, 153-156 (2001).
  9. Thomas, M., Zhu, A. Hepocellular carcinoma: the need for progress. Journal of Clinical Oncology. 23, 2892-2899 (2005).
  10. Llovet, J., Bruix, J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology. 48, 1312-1327 (2008).
  11. Bruix, J., Sherman, M. Management of hepatocellular carcinoma: an update. Hepatology. 53, 1020-1022 (2011).
  12. Pang, T., Lam, V. Surgical management of hepatocellular carcinoma. World Journal of Hepatology. 7, 245-252 (2015).
  13. Llovet, J., et al. Design and endpoints of clinical trials in hepatocellular carcinoma. Journal of the National Cancer Institution. 100, 698-711 (2008).
  14. Mueller, K. Cancer immunology and immunotherapy. Realizing the promise. Introduction. Science. 348, 54-55 (2015).
  15. Gajewski, T., Schreiber, H., Fu, Y. Innate and adaptive immune cells in the tumor microenvironment. Nature Immunology. 14, 1014-1022 (2013).
  16. Ribas, A., Wolchok, J. Combining cancer immunotherapy and targeted therapy. Current Opinion in Immunology. 25, 291-296 (2013).
  17. Postow, M., Callahan, M., Wolchok, J. Immune checkpoint blockade in cancer therapy. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 33, 1974-1982 (2015).
  18. Gao, J., et al. VISTA is an inhibitory immune checkpoint that is increased in ipilimumab therapy in patients with prostate cancer. Nature Medicine. 23, 551-555 (2017).
  19. Hahn, A., Gill, D., Pal, S., Agarwal, N. The future of immune checkpoint cancer therapy after PD-1 and CTLA-4. Immunotherapy. 9, 681-692 (2017).
  20. Remon, J., Besse, B. Immune checkpoint inhibitors in first-line therapy of advanced non-small cell lung cancer. Current Opinion in Oncology. 29, 97-104 (2017).
  21. Kudo, M. Immune checkpoint blockade in hepatocellular carcinoma: 2017 update. Liver Cancer. 6, 1-12 (2017).
  22. Kudo, M. Immune checkpoint inhibition in hepatocellular carcinoma: Basics and ongoing clinical trials. Oncology. 92, 50-62 (2017).
  23. Breous, E., Thimme, R. Potential of immunotherapy for hepatocellular carcinoma. Journal of Hepatology. 54, 830-834 (2011).
  24. Sprinzl, M., Galle, P. Facing the dawn of immunotherapy for hepatocellular carcinoma. Journal of Hepatology. 59, 9-10 (2013).
  25. Liu, D., Staveley-O’Carroll, K., Li, G. Immune-based therapy clinical trials in hepatocellular carcinoma. Journal of Clinical Cell Immunology. 6, 376 (2015).
  26. Greten, T., Wang, X., Korangy, F. Current concepts of immune based treatments for patients with HCC: from basic science to novel treatment approaches. Gut. 64, 842-848 (2015).
  27. Koster, B., de Gruijl, T., van den Eertwegh, A. Recent developments and future challenges in immune checkpoint inhibitory cancer treatment. Current Opinion in Oncology. 27, 482-488 (2015).
  28. Johnson, D., Sullivan, R., Menzies, A. Immune checkpoint inhibitors in challenging populations. Cancer. 123, 1904-1911 (2017).
  29. Li, H., et al. Programmed cell death-1 (PD-1) checkpoint blockade in combination with an mTOR inhibitor restrains hepatocellular carcinoma growth induced by hepatoma cell-intrinsic PD-1. Hepatology. 66, 1920-1933 (2017).
  30. Heindryckx, F., Colle, I., van Vlierberghe, H. Experimental mouse models for hepatocellular carcinoma research. International Journal of Experimental Pathology. 90, 367-386 (2009).
  31. Qi, X., et al. Development of inCVAX, in situ cancer vaccine, and its immune response in mice with hepatocellular cancer. Journal of Clinical and Cellular Immunology. 7, 438 (2016).
  32. Qi, X., et al. Development of a radiofrequency ablation platform in a clinically relevant murine model of hepatocellular cancer. Cancer Biology and Therapy. 16, 1812-1819 (2015).
  33. Liu, D., et al. Sunitinib represses regulatory T cells to overcome immunotolerance in a murine model of hepatocellular cancer. Oncoimmunology. 7, 1372079 (2017).
  34. Staveley-O’Carroll, K., et al. In vivo ligation of CD40 enhances priming against the endogenous tumor antigen and promotes CD8+ T cell effector function in SV40 T antigen transgenic mice. Journal of Immunology. 171, 697-707 (2003).
  35. Avella, D., et al. Regression of established hepatocellular carcinoma is induced by chemoimmunotherapy in an orthotopic murine model. Hepatology. 55, 141-152 (2012).
  36. Li, G., et al. Successful chemoimmunotherapy against hepatocellular cancer in a novel murine model. Journal of Hepatology. 66, 75-85 (2017).
  37. Li, G., et al. Nanoliposome C6-ceramide increases the anti-tumor immune response and slows growth of liver tumors in ice. Gastroenterology. 154, 1024-1036 (2018).
  38. Held, W., et al. T antigen expression and tumorigenesis in transgenic mice containing a mouse major urinary protein/SV40 T antigen hybrid gene. EMBO Journal. 8, 183-191 (1989).
  39. Hanahan, D., Weinber, R. Hallmarks of cancer: the next generation. Cell. 144, 646-674 (2011).
check_url/59368?article_type=t

Play Video

Cite This Article
Qi, X., Schepers, E., Avella, D., Kimchi, E. T., Kaifi, J. T., Staveley-O’Carroll, K. F., Li, G. An Oncogenic Hepatocyte-Induced Orthotopic Mouse Model of Hepatocellular Cancer Arising in the Setting of Hepatic Inflammation and Fibrosis. J. Vis. Exp. (151), e59368, doi:10.3791/59368 (2019).

View Video