Summary

用于隔离和测序微RNA并使用开源工具分析微RNA的完整管道

Published: August 21, 2019
doi:

Summary

在这里,我们描述了一个分步策略,用于隔离小型RNA、丰富微RNA和为高通量测序准备样本。然后,我们介绍如何使用开源工具处理序列读取并将其与微RNA对齐。

Abstract

一半的人类记录被认为是由微RNA调节的。因此,量化微RNA表达可以揭示疾病状态的基本机制,并提供治疗靶点和生物标志物。在这里,我们将详细介绍如何准确量化微RNA。简而言之,该方法描述了分离微RNA、将它们与适合高通量测序的适配器、放大最终产品以及准备样本库。然后,我们解释如何将获取的测序读数与微RNA发夹对齐,并量化、规范化和计算其差分表达。多功能且坚固,这种结合的实验工作流程和生物信息分析使用户能够从组织提取开始,完成微RNA定量。

Introduction

人类基因组2中首次发现于1993年1,现在估计有近2000个微RNA。微RNA是小型非编码RNA,通常为21-24个核苷酸长。它们是基因表达的转录后调节器,通常结合目标基因的3个未翻译区域(3-UTR)的互补位点,以抑制蛋白质表达和降解mRNA。量化微RNA可以给基因表达提供有价值的见解,并为此开发了几种协议3。

我们开发了一种定义、可重复和长期的协议,用于小型RNA测序,以及使用开源生物信息学工具分析规范化读取。重要的是,我们的协议能够同时识别内源性微RNA和外源交付的构造,从而产生类似微RNA的物种,同时最大限度地减少到其他小RNA物种(包括核糖体RNA)的读数。rRNA),转移RNA衍生的小RNA(tsRNA),重复衍生的小RNA和mRNA降解产物。幸运的是,微RNA是5-磷酸化和2-3羟基化4,一个功能,可以利用它们从这些其他小RNA和mRNA降解产物分离。对于微RNA克隆和测序,存在若干商业选择,这些选择往往更快、更容易进行多路复用;然而,试剂盒的专有特性及其频繁的修改使得比较样品运行具有挑战性。我们的策略通过丙烯酰胺和阿甘蔗凝胶纯化步骤,仅优化收集正确大小的微RNA。在此协议中,我们还描述了使用开源工具将序列读取与微RNA对齐的过程。这套说明对于信息学新手用户特别有用,无论我们使用的是库准备方法还是商业方法。

该协议已用于几个已发表的研究。例如,它被用来识别Dicer酶在距离茎环结构内部回路两个核苷酸的距离上切割小发夹RNA的机制,即所谓的”循环计数规则”5。我们还遵循这些方法,以识别从重组的阿德诺相关病毒载体 (rAAV) 表达的小发夹 RNA (shRNA) 的相对丰度,以识别在肝脏之前可以耐受的 shRNA 表达阈值毒性与过量shRNA表达6相关。利用这个协议,我们还确定了肝脏中的微RNA,这些微RNA对缺乏微RNA-122(一种高度表达的肝微RNA)作出反应,同时也确定了这种微RNA7的降解模式。由于我们在众多实验中一致地使用了我们的协议,因此我们能够纵向观察样品制剂,并且发现没有明显的批次效应。

在共享该协议时,我们的目标是使用户能够使用负担得起的设备和试剂以及免费的生物信息学工具,在几乎任何组织或细胞系中生成高质量、可重复的微RNA定量。

Protocol

动物实验得到了华盛顿大学机构动物护理和使用委员会的授权。 小型RNA库制备 1. RNA分离 使用标准RNA分离试剂或用于微RNA的试剂盒从生物源分离RNA。对于组织,最好从样品开始,用液氮冷冻样品,然后用预冷冻砂浆和虫子将样品冷冻到粉末中。 在可量化RNA并提供RNA完整性数(RIN)的仪器上测量每个样品的RNA完整性。…

Representative Results

图书馆准备中涉及的步骤图图2概述了小RNA提取、测序和对齐的总体原理图。采集了一只雄性小鼠和一只雌性小鼠的肝脏样本,并冷冻在液氮中。提取总RNA并评估质量和浓度。 小RNA测序产生足够的RNA测序从两个独立的RNA提取中提取的3μgRNA被用作小RNA测序的起始材料。样?…

Discussion

尽管20多年前鉴定了微RNA,但微RNA测序过程仍然十分费力,需要专门的设备,阻碍了实验室常规采用内部协议14。其他技术可以同时评估微RNA,如微RNA微阵列和多路复用表达面板;然而,这些方法是有限的,因为它们只量化其探针集中存在的微RNA。因此,他们忽略了小RNA测序的重要特征,如新微RNA的鉴定,以及微RNA等形式-核苷变化,这些改变可以产生重要的生物?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们要感谢安德鲁·火和马克·凯实验室的成员的指导和建议。

Materials

100 bp DNA ladder NEB N3231
19:1 bis-acrylamide Millipore Sigma A9926
25 bp DNA step ladder Promega G4511
Acid phenol/chloroform ThermoFisher AM9720
Acrylamide RNA loading dye ThermoFisher R0641
Ammonium persulfate (APS) Biorad 161-0700
Bioanalyzer instrument Agilent G2991AA For assessing RNA quality and concentration
Chloroform Fisher Scientific C298-500
Ethanol (100%) Sigma E7023
Gel Loading Buffer II ThermoFisher AM8547
GlycoBlue ThermoFisher AM9516 Blue color helps in visualizing pellet
HCl Sigma 320331
KOH Sigma P5958
Maxi Vertical Gel Box 20 x 20cm Genesee 45-109
miRVana microRNA isolation kit ThermoFisher AM1560
miSeq system Illumina SY-410-1003 For generating small RNA sequencing data
NaCl Fisher Scientific S271-500
Nusieve low-melting agarose Lonza 50081
Parafilm (laboratory sealing film) Millipore Sigma P7793
Poly-ethylene glycol 8000 NEB included with M0204
ProtoScript II First strand cDNA Synthesis Kit NEB E6560S
QIAquick Gel Extraction kit Qiagen 28704
Qubit Fluorometer ThermoFisher Q33226 For quantifying DNA concentration
Qubit RNA HS Assay kit ThermoFisher Q32855
Razor Blades Fisher Scientific 12640
Siliconized Low-Retention 1.5 ml tubes Fisher Scientific 02-681-331
T4 RNA ligase 1 NEB M0204
T4 RNA Ligase 2, truncated NEB M0242S
TapeStation Agilent G2939BA For assessing RNA quality and concentration
Taq DNA Polymerase NEB M0273X
TEMED Biorad 161-0800
Tris Base pH 7.5 Sigma 10708976001
Tris-buffered EDTA Sigma T9285
Trizol ThermoFisher 15596026
UltraPure Ethidium bromide (10 mg/ml) Invitrogen 15585-011
Universal miRNA cloning linker NEB S1315S
Urea Sigma U5378

References

  1. Lee, R. C., Feinbaum, R. L., Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75 (5), 843-854 (1993).
  2. Bartel, D. P. Metazoan MicroRNAs. Cell. 173 (1), 20-51 (2018).
  3. Lau, N. C., Lim, L. P., Weinstein, E. G., Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 294 (5543), 858-862 (2001).
  4. Kim, V. N., Han, J., Siomi, M. C. Biogenesis of small RNAs in animals. Nature Reviews Molecular Cell Biology. 10 (2), 126-139 (2009).
  5. Gu, S., et al. The loop position of shRNAs and pre-miRNAs is critical for the accuracy of dicer processing in vivo. Cell. 151 (4), 900-911 (2012).
  6. Valdmanis, P. N., et al. RNA interference-induced hepatotoxicity results from loss of the first synthesized isoform of microRNA-122 in mice. Nature Medicine. 22 (5), 557-562 (2016).
  7. Valdmanis, P. N., et al. miR-122 removal in the liver activates imprinted microRNAs and enables more effective microRNA-mediated gene repression. Nature Communications. 9 (1), 5321 (2018).
  8. Griffiths-Jones, S. The microRNA Registry. Nucleic Acids Research. 32, D109-D111 (2004).
  9. Griffiths-Jones, S., Grocock, R. J., van Dongen, S., Bateman, A., Enright, A. J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Research. 34 (Database issue), D140-D144 (2006).
  10. Griffiths-Jones, S., Saini, H. K., van Dongen, S., Enright, A. J. miRBase: tools for microRNA genomics. Nucleic Acids Research. 36 (Database issue), D154-D158 (2008).
  11. Patro, R., Mount, S. M., Kingsford, C. Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms. Nature Biotechnology. 32 (5), 462-464 (2014).
  12. Love, M. I., Huber, W., Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology. 15 (12), 550 (2014).
  13. Fire, A., et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391 (6669), 806-811 (1998).
  14. Etheridge, A., Wang, K., Baxter, D., Galas, D. Preparation of Small RNA NGS Libraries from Biofluids. Methods in Molecular Biology. 1740, 163-175 (2018).
  15. Yamane, D., et al. Differential hepatitis C virus RNA target site selection and host factor activities of naturally occurring miR-122 3 variants. Nucleic Acids Research. 45 (8), 4743-4755 (2017).
  16. Giraldez, M. D., et al. Comprehensive multi-center assessment of small RNA-seq methods for quantitative miRNA profiling. Nature Biotechnology. 36 (8), 746-757 (2018).
  17. Dard-Dascot, C., et al. Systematic comparison of small RNA library preparation protocols for next-generation sequencing. BMC Genomics. 19 (1), 118 (2018).
  18. Yeri, A., et al. Evaluation of commercially available small RNASeq library preparation kits using low input RNA. BMC Genomics. 19 (1), 331 (2018).
  19. Coenen-Stass, A. M. L., et al. Evaluation of methodologies for microRNA biomarker detection by next generation sequencing. RNA Biology. 15 (8), 1133-1145 (2018).
  20. Baran-Gale, J., et al. Addressing Bias in Small RNA Library Preparation for Sequencing: A New Protocol Recovers MicroRNAs that Evade Capture by Current Methods. Frontiers in Genetics. 6, 352 (2015).
  21. Jayaprakash, A. D., Jabado, O., Brown, B. D., Sachidanandam, R. Identification and remediation of biases in the activity of RNA ligases in small-RNA deep sequencing. Nucleic Acids Research. 39 (21), e141 (2011).
  22. Van Nieuwerburgh, F., et al. Quantitative bias in Illumina TruSeq and a novel post amplification barcoding strategy for multiplexed DNA and small RNA deep sequencing. PLoS One. 6 (10), e26969 (2011).
  23. Valdmanis, P. N., et al. Upregulation of the microRNA cluster at the Dlk1-Dio3 locus in lung adenocarcinoma. Oncogene. 34 (1), 94-103 (2015).
  24. Schwarzenbach, H., da Silva, A. M., Calin, G., Pantel, K. Data Normalization Strategies for MicroRNA Quantification. Clinical Chemistry. 61 (11), 1333-1342 (2015).
  25. Viollet, S., Fuchs, R. T., Munafo, D. B., Zhuang, F., Robb, G. B. T4 RNA ligase 2 truncated active site mutants: improved tools for RNA analysis. BMC Biotechnology. 11, 72 (2011).
  26. Chiang, H. R., et al. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes & Development. 24 (10), 992-1009 (2010).
  27. Fromm, B., et al. A Uniform System for the Annotation of Vertebrate microRNA Genes and the Evolution of the Human microRNAome. Annual Review of Genetics. 49, 213-242 (2015).

Play Video

Cite This Article
Course, M. M., Gudsnuk, K., Valdmanis, P. N. A Complete Pipeline for Isolating and Sequencing MicroRNAs, and Analyzing Them Using Open Source Tools. J. Vis. Exp. (150), e59901, doi:10.3791/59901 (2019).

View Video