Summary

用于评估细胞运动和相关信号事件的机械控制的单细胞Durotaxis测定

Published: August 27, 2019
doi:

Summary

机械力对于控制细胞迁移非常重要。该协议演示了弹性水凝胶的使用,可以使用玻璃微移液器和微操纵器变形,以刺激具有局部刚度梯度的细胞,从而引起细胞结构和迁移的变化。

Abstract

杜罗拉茨是细胞感知和响应紧张梯度的过程。为了在体外研究这个过程,必须操纵细胞基础基板的刚度。虽然具有分级刚度和长期迁移检测的水凝胶已证明在durotaxis研究中有用,但是对基质张力局部变化的即时急性反应允许对单个细胞运动和亚细胞信号事件进行重点研究。为了重复测试细胞对底层基底刚度的感知和反应能力,采用了一种改进的方法,用于对在可变形水凝胶上培养的单个细胞应用增加张力的急性梯度,从而实现实时操作刚度梯度的强度和方向传授给有问题的细胞。此外,通过微调测定的细节和参数,如微移液器的形状和尺寸或应用梯度的相对位置、位置和方向,可以优化测定,以进行机械研究。敏感细胞类型和系统。这些参数可以改变,以可靠地改变应用的刺激,并扩展测定的功能和多功能性。这种方法允许检查长期的柔化运动,以及细胞信号和形态动力学的更直接的变化,以响应不断变化的刚度。

Introduction

在过去的几十年里,细胞环境的机械特性的重要性在细胞生物学中得到了越来越多的认可。不同的组织和细胞外基质具有不同的相对刚度,当细胞在全身迁移时,它们会导航这些变化,使用这些机械特性来引导它们1,2,3,4,5,6,7.细胞使用给定组织的刚度在发育、伤口愈合和癌症转移等过程中告知其活动行为。然而,允许感觉和响应这些机械输入的分子机制在很大程度上仍然未知1,2,3,4,5,6,7.

为了研究细胞对物理环境线索的反应机制,必须操纵基底基体附着细胞的刚度或刚度。2000年,罗春敏、王玉丽及其同事研制出一种测定8,通过拉伸可变形的细胞外基质(ECM)涂层聚丙烯酰胺,直接测试单个细胞对机械线索变化的移动反应。水凝胶,细胞被镀。细胞表现出对向更硬基质迁移的偏好,他们称之为”杜罗塔克”。

自2000年提交原始报告以来,还采用了许多其他技术来研究杜罗塔。通过将凝胶铸造在硬质特征(如聚苯乙烯珠9或硬聚合物柱10)上,或通过在玻璃盖玻片11的边缘聚合基板来制造陡峭的刚度梯度,从而形成机械性’步进边界’。或者,采用较浅但固定刚度梯度的水凝胶由多种方法制成,例如微流体装置12、13或并排水凝胶溶液液滴创建的交联物梯度不同的刚度 8 ,或水凝胶与光活联处理与分级紫外线光曝光,以创建线性刚度梯度 14 , 15 。这些技术已经被用来研究随着时间的推移,大量的二维细胞运动。然而,这些特征通常是在细胞电镀之前制造的,在实验过程中,它们的性能保持一致,依靠随机细胞运动对机械梯度进行采样。这些技术都无法观察细胞行为在急性机械刺激下的快速变化。

为了观察细胞对机械环境急剧变化的反应,单细胞durotaxis测定具有几个优点。在这些测定中,通过用玻璃微移液器将底层基板从细胞中拉出,从而引入细胞基质张力的方向梯度,从而给单个细胞一种急性的机械刺激。然后,活细胞相对比显微镜观察移动行为的变化,如迁移的速度或方向。这种方法有助于直接观察机械刺激和细胞迁移之间的因果关系,因为它允许快速、反复地操作张力梯度的方向和幅度,并评估其细胞实时反应。此外,该方法还可用于机械刺激细胞表达荧光融合蛋白或生物传感器,以可视化被怀疑参与机械感应和杜罗塔斯。

这项技术已被研究杜罗塔克8,16的小组使用,并在这里描述,因为它已被豪实验室改造,以研究SKOV-3卵巢癌细胞的杜罗法行为和分子机制,下杜罗塔17。此外,还描述了一种改进方法,用于在细胞培养表面附近用单层甚至荧光微球制造水凝胶;这有利于微移液器生成的应变梯度的可视化和优化,并可能允许通过牵引力显微镜评估细胞收缩性。

Protocol

1. 用嵌入式荧光微球制造可变形的聚丙烯酰胺水凝胶 注:方向描述直径为 22 μm、厚度约为 66 μm 的 25 kPa 水凝胶的聚合。可以修改每个或所有这些参数,并在表 1和备注17中找到这样做的方向。 激活玻璃底餐具或盖玻片 准备结合硅烷工作溶液,用于激活玻璃底成像盘或适合活细胞成像室的盖玻片。混合 950…

Representative Results

通过制备微移液器(图1)和如上所述的拉力生成(图2和图3)标准化,为多个细胞系确定了最佳的二维战术条件。使用这种技术,如图4所述,SKOV-3卵巢癌细胞17和Ref52大鼠胚胎纤维细胞(图5)都朝着玻璃微移液器应用的梯度增加的刚度方向发展。除了杜罗塔,这种方?…

Discussion

这里演示的是一个可重复的单细胞durotaxis测定,允许评估细胞在响应急性机械提示时改变其迁移行为的能力。该技术还可用于荧光显微镜和适当的融合蛋白或生物传感器,以检查亚细胞信号和细胞骨骼事件在机械刺激的几秒钟内或超过较长的时间刻度杜罗法运动。了解细胞与其环境的关系涉及研究该环境的化学和机械方面的影响。虽然可能难以掌握,但这种杜罗塔斯测定可以广泛用于理解细胞对?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

没有。

Materials

Acrylamide 40 %  National Diagnostic EC-810
Ammonium Persulfate  Fisher BP179-25
BD20A High frequency generator Electro Technic Products 12011A 115 V - Handheld Corona Wand
Bind Silane (y-methacryloxypropyltrimethoxysilane) ( Sigma Aldrich M6514
Bis-acrylamide 2%  National Diagnostic EC-820
Borosilicate glass capillaries World Precision Instruments 1B100-4
Branson 2510 Ultrasonic Cleaner Bransonic 40 kHz frequency
Coarse Manipulator Narshige MC35A
DMEM Corning 10-013-CV
DMEM without phenol red Sigma Aldrich D5030
Dual-Stage Glass Micropipette Puller Narshige PC-10
Epidermal Growth Factor Peprotech AF-100-15
Ethanol Pharmco-aaper 111000200
Fetal Bovine Serum (Qualified One Shot) Gibco A31606-02
Fibronectin  EMD Millipore FC010
Fluospheres Carboxylate 0.2 um  Invitrogen F8810, F8807, F8811
Fugene 6 Roche 1815091 1.5 ug DNA / 6uL fugene 6 per 35mm dish
Glacial Acetic Acid Fisher Chemical A38SI-212
Glass Bottom Dish CellVis D60-60-1.5-N
Glass Coverslip Electron Microscopy Sciences 72224-01 22 mm, #1.5
HCl JT Baker 9535-03
Hellmanex III Special cleaning concentrate Sigma Aldrich Z805939 Used at 2% in ddH2O for cleaning coverslips
HEPES powder Sigma Aldrich H3375 Make 50mM HEPES buffer, pH 8.5
Intelli-Ray 400 Shuttered UV Flood Light Uviton International UV0338
Isopropanol Fisher Chemical A417-4
Microforge Narshige MF900
Micromanipulator Narshige MHW3
Mineral Oil Sigma Aldrich M5904
Nanopure Life Science UV/UF System Barnstead D11931 ddH2O
Nikon Eclipse Ti Nikon
OptiMEM Invitrogen 31985062
Parafilm M Bemis Company, Inc PM-992
PBS 139 mM NaCl, 2.5 mM KCl, 28.6 mM Na2HPO4, 1.6 mM KH2PO4, pH 7.4
Platelet Derived Growth Factor-BB (PDGF-BB) Sigma Aldrich P4056
Ref52 Rat embryonic fibroblast cell line; Culture in DMEM + 10% FBS
Ringer's Buffer 134 mM NaCl, 5.4 mM KCl, 1 mM MgSO4, 2.4 mM CaCl2, 20 mM HEPES, 5 mM D-Glucose, pH 7.4
SKOV-3 American Type Culture Collection Culture in DMEM + 10% FBS
Sulfo-SANPAH  Covachem  12414-1
Tabletop Plasma Cleaner Harrick Plasma PDC-32G
TEMED  Sigma Aldrich T9281-50

References

  1. Acerbi, I., et al. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integrative Biology (Camb. 7 (10), 1120-1134 (2015).
  2. Mekhdjian, A. H., et al. Integrin-mediated traction force enhances paxillin molecular associations and adhesion dynamics that increase the invasiveness of tumor cells into a three-dimensional extracellular matrix. Molecular Biology of the Cell. 28 (11), 1467-1488 (2017).
  3. Paszek, M. J., et al. Tensional homeostasis and the malignant phenotype. Cancer Cell. 8 (3), 241-254 (2005).
  4. Lange, J. R., Fabry, B. Cell and tissue mechanics in cell migration. Experimental Cell Research. 319 (16), 2418-2423 (2013).
  5. Davidson, L. A., Oster, G. F., Keller, R. E., Koehl, M. A. Measurements of mechanical properties of the blastula wall reveal which hypothesized mechanisms of primary invagination are physically plausible in the sea urchin Strongylocentrotus purpuratus. Developmental Biology. 209 (2), 221-238 (1999).
  6. Li, D., et al. Role of mechanical factors in fate decisions of stem cells. Regenerative Medicine. 6 (2), 229-240 (2011).
  7. Handorf, A. M., Zhou, Y., Halanski, M. A., Li, W. J. Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis. 11 (1), 1-15 (2015).
  8. Lo, C. M., Wang, H. B., Dembo, M., Wang, Y. L. Cell movement is guided by the rigidity of the substrate. Biophysical Journal. 79 (1), 144-152 (2000).
  9. Kuo, C. H., Xian, J., Brenton, J. D., Franze, K., Sivaniah, E. Complex stiffness gradient substrates for studying mechanotactic cell migration. Advanced Materials. 24 (45), 6059-6064 (2012).
  10. Breckenridge, M. T., Desai, R. A., Yang, M. T., Fu, J., Chen, C. S. Substrates with engineered step changes in rigidity induce traction force polarity and durotaxis. Cell and Molecular Bioengineering. 7 (1), 26-34 (2014).
  11. Goreczny, G. J., Wormer, D. B., Turner, C. E. A Simplified System for Evaluating Cell Mechanosensing and Durotaxis In Vitro. Journal of Visualized Experiments. (102), e52949 (2015).
  12. Hartman, C. D., Isenberg, B. C., Chua, S. G., Wong, J. Y. Vascular smooth muscle cell durotaxis depends on extracellular matrix composition. Proceedings of the National Acadademy of Sciences of the United States of America. 113 (40), 11190-11195 (2016).
  13. Vincent, L. G., Choi, Y. S., Alonso-Latorre, B., del Alamo, J. C., Engler, A. J. Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength. Biotechnology Journal. 8 (4), 472-484 (2013).
  14. Sunyer, R., Jin, A. J., Nossal, R., Sackett, D. L. Fabrication of hydrogels with steep stiffness gradients for studying cell mechanical response. PLoS One. 7 (10), e46107 (2012).
  15. Martinez, J. S., Lehaf, A. M., Schlenoff, J. B., Keller, T. C. Cell durotaxis on polyelectrolyte multilayers with photogenerated gradients of modulus. Biomacromolecules. 14 (5), 1311-1320 (2013).
  16. Plotnikov, S. V., Pasapera, A. M., Sabass, B., Waterman, C. M. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell. 151 (7), 1513-1527 (2012).
  17. McKenzie, A. J., et al. The mechanical microenvironment regulates ovarian cancer cell morphology, migration, and spheroid disaggregation. Scientific Reports. 8 (1), 7228 (2018).
  18. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  19. Grashoff, C., et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature. 466 (7303), 263-266 (2010).
  20. McKenzie, A. J., Campbell, S. L., Howe, A. K. Protein kinase A activity and anchoring are required for ovarian cancer cell migration and invasion. PLoS One. 6 (10), e26552 (2011).
  21. Kandow, C. E., Georges, P. C., Janmey, P. A., Beningo, K. A. Polyacrylamide hydrogels for cell mechanics: steps toward optimization and alternative uses. Methods in Cell Biology. 83, 29-46 (2007).
  22. Plotnikov, S. V., Sabass, B., Schwarz, U. S., Waterman, C. M. High-resolution traction force microscopy. Methods in Cell Biology. 123, 367-394 (2014).
  23. Knoll, S. G., Ali, M. Y., Saif, M. T. A novel method for localizing reporter fluorescent beads near the cell culture surface for traction force microscopy. Journal of Visualized Experiments. (91), 51873 (2014).

Play Video

Cite This Article
Svec, K. V., Patterson, J. B., Naim, N., Howe, A. K. Single Cell Durotaxis Assay for Assessing Mechanical Control of Cellular Movement and Related Signaling Events. J. Vis. Exp. (150), e59995, doi:10.3791/59995 (2019).

View Video