Summary

Få kreft stamcellesfærer fra gynekologiske og brystkreft svulster

Published: March 01, 2020
doi:

Summary

Målet med denne metodikken er å identifisere kreftstamceller (CSC) i kreftcellelinjer og primære menneskelige tumorprøver med sfæredannende protokoll, på en robust måte, ved hjelp av funksjonelle analyser og fenotypisk karakterisering med flow cytometri og vestlig Blot.

Abstract

Kreft stamceller (CSC) er en liten befolkning med selvfornyelse og plastisitet som er ansvarlig for tumorigenese, motstand mot behandling og tilbakevendende sykdom. Denne populasjonen kan identifiseres med overflatemarkører, enzymatisk aktivitet og en funksjonell profil. Disse tilnærmingene per se er begrenset, på grunn av fenotypisk heterogenitet og CSC plastisitet. Her oppdaterer vi sfæreformingsprotokollen for å få CSC-kuler fra bryst- og gynekologiske kreftformer, vurdere funksjonelle egenskaper, CSC-markører og proteinuttrykk. Kulene oppnås med encellede seeding ved lav tetthet i suspensjonskultur, ved hjelp av et halvsolid metylcellulosemedium for å unngå migrasjon og aggregater. Denne lønnsomme protokollen kan brukes i kreftcellelinjer, men også i primære svulster. Den tredimensjonale ikke-tilhenger suspensjon kultur antatt å etterligne tumor mikromiljøet, spesielt CSC-nisje, er supplert med epidermal vekstfaktor og grunnleggende fibroblast vekstfaktor for å sikre CSC signalering. Med sikte på robust identifisering av CSC foreslår vi en komplementær tilnærming, som kombinerer funksjonell og fenotypisk evaluering. Sfæredannende kapasitet, selvfornyelseog sfæreprojeksjonsområde etablerer CSC funksjonelle egenskaper. I tillegg består karakterisering av flytcytometri evaluering av markørene, representert ved CD44+/CD24 og CD133, og vestlig blot, vurderer ALDH. Den presenterte protokollen ble også optimalisert for primære tumorprøver, etter en prøvefordøyelsesprosedyre, nyttig for translasjonell forskning.

Introduction

Kreftpopulasjoner er heterogene, med celler som presenterer forskjellige morfologer, spredning og invasjonskapasitet, på grunn av differensialgenuttrykk. Blant disse cellene finnes en minoritetspopulasjon kalt kreftstamceller (CSC)1, som har kapasitet til selvfornyelse, rekapitulere heterogeniteten til den primære tumornisjen og produserer avvikende differensierende forfedre som ikke reagerer tilstrekkelig på homeostatiske kontroller2. CSC egenskaper kan oversettes direkte i klinisk praksis, gitt foreningen med hendelser, som tumorigeniitet eller motstand mot kjemoterapi3. Identifisering av CSC kan føre til utvikling av målrettede terapier som kan omfatte blokkering av overflatemarkører, markedsføring av CSC-differensiering, blokkering av CSC-signalbanekomponenter, nisjeødeleggelse og epigenetiske mekanismer4.

Isoleringen av CSC er utført i cellelinjer og i prøver av primære svulster5,6,7,8. Den funksjonelle profilen som er beskrevet for CSC inkluderer klonogen kapasitet, sidepopulasjon og tumorosfæredannelse9. CD44høy/CD24lav fenotype har vært konsekvent forbundet med bryst CSC, som har vist seg å være tumorigen in vivo og har allerede vært forbundet med epitel til mesenchymal overgang5,10. Høy ALDH-aktivitet har også vært forbundet med stemness og epitel til mesenchymal overgang (EMT) i flere typer solide svulster11. ALDH uttrykk har vært forbundet med motstand mot kjemoterapi og csc fenotype in vitro12,13,14,15,16. Flere andre markører har vært knyttet til CSC egenskaper i ulike typer svulster, for eksempel CD133, CD49f, ITGA6, CD1663,4 og andre, som beskrevet i tabell 1.

Tumorsfærene består av en tredimensjonal modell for studiet og utvidelse av CSC. I denne modellen dyrkes cellesuspensjonene fra cellelinjer og fra blod- eller tumorprøver i et medium supplert med vekstfaktorer, nemlig epidermal vekstfaktor (EGF) og grunnleggende fibroblast vekstfaktor (bFGF), uten føtal storfe serum og i ikke-tilhengerforhold17. Hemming av cellevedheft resulterer i død av anoikis av differensierte celler18. Kuler er avledet fra klonal vekst av en isolert celle. For dette formålet distribueres cellene med lav tetthet for å unngå cellefusjon og aggregasjon19. En annen strategi inkluderer bruk av semisolid metylcellulose20.

Den sfæredannende protokollen fikk popularitet i CSC isolasjon og ekspansjon, på grunn av tid og kostnader og tekniske, lønnsomme og reproduserbare grunner21,22. Til tross for noen reserver på omfanget av hvilken sfæredannelse gjenspeiler CSC, er det en tilbøyelighet til stamceller å vokse i ikke-overholdende forhold med den karakteristiske fenotypen, som ligner den opprinnelige mikromiljøet21. Ingen av metodene som er tilgjengelige for isolering av CSC fra solide svulster har fullstendig effektivitet, og fremhever viktigheten av å utvikle mer spesifikke markører eller kombinasjoner av metoder og markører.

I denne protokollen beskriver vi isoleringen av CSC med sfæredannende protokoll, med prinsippet om encellet vekst i ikke-etterfølgende forhold og evnen til å produsere en differensiert fenotype. En skjematisk representasjon av denne prosedyren er representert i figur 1. Vi beskriver også karakteriseringen med overflatemarkører og ALDH-uttrykk for CSC, både for bryst- og gynekologiske tumorceller linjer og prøver av primære svulster.

Protocol

Denne protokollen ble utført i samsvar med de etiske retningslinjene til Coimbra Hospital and Universitary Center (CHUC) Tumor Bank, og ble godkjent av CHUCs etikkkomité for helse og av Den portugisiske nasjonale databeskyttelseskommisjonen. 1. Sfæredannende protokoll og avledede tilhengere populasjoner fra kontinuerlige cellekulturer MERK: Utfør alle prosedyrer under strenge sterile forhold. Tilberedning av ikke-tilhengeropphengskulturflasker eller pl…

Representative Results

Den sfæredannende protokollen gjør det mulig å få sfæriske kolonier i suspensjon fra flere endometrie- og brystkreftcellelinjer (figur 2A) eller etter mild enzymatisk fordøyelse av vev fra menneskelige tumorprøver (Figur 2E). I begge tilfeller, noen dager etter plating, oppnås monoklonale sfæriske kolonier i suspensjon. Både endometrie- og brystkreftsfærer gir opphav til en cellemonolayer med lignende morfologi til op…

Discussion

Denne protokollen beskriver en tilnærming for å få tumorsfærer fra kreftcellelinjer og primære menneskelige prøver. Tumorsfærer er beriket i en underpopulasjon med stamcellelignende egenskaper36. Denne berikelsen i CSC er avhengig av levedyktighet i et forankringsfritt miljø, mens differensierte celler er avhengige av vedhende til et substrat37. Som primær plating av tumorceller i et lavt etterlevelse miljø som pålegger suspensjon sikrer ikke berikelse i CSC per …

Disclosures

The authors have nothing to disclose.

Acknowledgements

Denne studien ble finansiert av Det portugisiske samfunnet for gynekologi gjennom forskningsprisen for 2016 og av CIMAGO. Cnc. IBILI støttes gjennom Foundation for Science and Technology, Portugal (UID/NEU/04539/2013), og medfinansiert av FEDER-COMPETE (POCI-01-0145-FEDER-007440). Coimbra Hospital and Universitary Center (CHUC) Tumor Bank, godkjent av CHUCs etikkkomité for helse og av den portugisiske nasjonale databeskyttelseskommisjonen, var kilden til endometrieprøver av pasienter fulgt ved institusjonens gynekologitjeneste. Figur 1 ble produsert ved hjelp av Servier Medical Art, tilgjengelig fra www.servier.com.

Materials

Absolute ethanol Merck Millipore 100983
Accutase Gibco A1110501 StemPro Accutas Cell Dissociation Reagent
ALDH antibody Santa Cruz Biotechnology SC166362
Annexin V FITC BD Biosciences 556547
Antibiotic antimycotic solution Sigma A5955
BCA assay Thermo Scientific 23225 Pierce BCA Protein Assay Kit
Bovine serum albumin Sigma A9418
CD133 antibody Miteny Biotec 293C3-APC Allophycocyanin (APC)
CD24 antibody BD Biosciences 658331 Allophycocyanin-H7 (APC-H7)
CD44 antibody Biolegend 103020 Pacific Blue (PB)
Cell strainer BD Falcon 352340 40 µM
Collagenase, type IV Gibco 17104-019
cOmplete Mini Roche 118 361 700 0
Dithiothreitol Sigma 43815
DMEM-F12 Sigma D8900
DNAse I Roche 11284932001
ECC-1 ATCC CRL-2923 Human endometrium adenocarcinoma cell line
Epidermal growth factor Sigma E9644
Fibroblast growth factor basic Sigma F0291
Haemocytometer VWR HERE1080339
HCC1806 ATCC CRL-2335 Human mammary squamous cell carcinoma cell line
Insulin, transferrin, selenium Solution Gibco 41400045
MCF7 ATCC HTB-22 Human mammary adenocarcinoma cell line
Methylcellulose AlfaAesar 45490
NaCl JMGS 37040005002212
Poly(2-hydroxyethyl-methacrylate Sigma P3932
Putrescine Sigma P7505
RL95-2 ATCC CRL-1671 Human endometrium carcinoma cell line
Sodium deoxycholic acid JMS EINECS 206-132-7
Sodium dodecyl sulfate Sigma 436143
Tris JMGS 20360000BP152112
Triton-X 100 Merck 108603
Trypan blue Sigma T8154
Trypsin-EDTA Sigma T4049
��-actin antibody Sigma A5316

References

  1. Hardin, H., Zhang, R., Helein, H., Buehler, D., Guo, Z., Lloyd, R. V. The evolving concept of cancer stem-like cells in thyroid cancer and other solid tumors. Laboratory Investigation. 97 (10), 1142 (2017).
  2. Plaks, V., Kong, N., Werb, Z. The Cancer Stem Cell Niche: How Essential Is the Niche in Regulating Stemness of Tumor Cells?. Cell Stem Cell. 16 (3), 225-238 (2015).
  3. Visvader, J. E., Lindeman, G. J. Cancer stem cells in solid tumours accumulating evidence and unresolved questions. Nature reviews. Cancer. 8, 755-768 (2008).
  4. Allegra, A., et al. The Cancer Stem Cell Hypothesis: A Guide to Potential Molecular Targets. Cancer Investigation. 32 (9), 470-495 (2014).
  5. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences. 100 (7), 3983-3988 (2003).
  6. Friel, A. M., et al. Functional analyses of the cancer stem cell-like properties of human endometrial tumor initiating cells. Cell Cycle. 7 (2), 242-249 (2008).
  7. Zhang, S., et al. Identification and Characterization of Ovarian Cancer-Initiating Cells from Primary Human Tumors. Cancer Research. 68 (11), 4311-4320 (2008).
  8. Bapat, S. A., Mali, A. M., Koppikar, C. B., Kurrey, N. K. Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer research. 65 (8), 3025-3029 (2005).
  9. Carvalho, M. J., Laranjo, M., Abrantes, A. M., Torgal, I., Botelho, M. F., Oliveira, C. F. Clinical translation for endometrial cancer stem cells hypothesis. Cancer and Metastasis Reviews. 34 (3), 401-416 (2015).
  10. Morel, A. P., Lièvre, M., Thomas, C., Hinkal, G., Ansieau, S., Puisieux, A. Generation of Breast Cancer Stem Cells through Epithelial-Mesenchymal Transition. PLoS ONE. 3 (8), e2888 (2008).
  11. Tirino, V., et al. Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. The FASEB Journal. 27 (1), 13 (2013).
  12. Ajani, J. A., et al. ALDH-1 expression levels predict response or resistance to preoperative chemoradiation in resectable esophageal cancer patients. Molecular Oncology. 8 (1), 142-149 (2014).
  13. Carvalho, M. J., et al. Endometrial Cancer Spheres Show Cancer Stem Cells Phenotype and Preference for Oxidative Metabolism. Pathology and Oncology Research. , (2018).
  14. Laranjo, M., et al. Mammospheres of hormonal receptor positive breast cancer diverge to triple-negative phenotype. The Breast. 38, 22-29 (2018).
  15. Cui, M., et al. Non-Coding RNA Pvt1 Promotes Cancer Stem Cell–Like Traits in Nasopharyngeal Cancer via Inhibiting miR-1207. Pathology & Oncology Research. , (2018).
  16. Deng, S., et al. Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 ALDH1), in human epithelial cancers. PloS one. 5 (4), e10277 (2010).
  17. Weiswald, L. B., Guinebretière, J. M., Richon, S., Bellet, D., Saubaméa, B., Dangles-Marie, V. In situ protein expression in tumour spheres: development of an immunostaining protocol for confocal microscopy. BMC Cancer. 10 (1), 106 (2010).
  18. Weiswald, L. B., Bellet, D., Dangles-Marie, V. Spherical Cancer Models in Tumor Biology. Neoplasia. 17 (1), 1-15 (2015).
  19. Picon-Ruiz, M., et al. Low adherent cancer cell subpopulations are enriched in tumorigenic and metastatic epithelial-to-mesenchymal transition-induced cancer stem-like cells. Scientific Reports. 6 (1), 1-13 (2016).
  20. Dontu, G., et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes & development. 17 (10), 1253-1270 (2003).
  21. Ballout, F., et al. Sphere-Formation Assay: Three-Dimensional in vitro Culturing of Prostate Cancer Stem/Progenitor Sphere-Forming Cells. Frontiers in Oncology. 8 (August), 1-14 (2018).
  22. Ishiguro, T., Ohata, H., Sato, A., Yamawaki, K., Enomoto, T., Okamoto, K. Tumor-derived spheroids: Relevance to cancer stem cells and clinical applications. Cancer Science. 108 (3), 283-289 (2017).
  23. Noseda, M., Nasatto, P., Silveira, J., Pignon, F., Rinaudo, M., Duarte, M. Methylcellulose, a Cellulose Derivative with Original Physical Properties and Extended Applications. Polymers. 7 (5), 777-803 (2015).
  24. Shaw, F. L., et al. A detailed mammosphere assay protocol for the quantification of breast stem cell activity. Journal of Mammary Gland Biology and Neoplasia. 17 (2), 111-117 (2012).
  25. Zhou, M., et al. LncRNA-Hh Strengthen Cancer Stem Cells Generation in Twist-Positive Breast Cancer via Activation of Hedgehog Signaling Pathway. Stem cells (Dayton, Ohio). 34 (1), 55-66 (2016).
  26. Ha, J. R., et al. Integration of Distinct ShcA Signaling Complexes Promotes Breast Tumor Growth and Tyrosine Kinase Inhibitor Resistance. Molecular cancer research MCR. 16 (5), 894-908 (2018).
  27. Jurmeister, S., et al. Identification of potential therapeutic targets in prostate cancer through a cross-species approach. EMBO molecular medicine. 10 (3), (2018).
  28. Schneider, C. A., Rasband, W. S., Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nature methods. 9 (7), 671-675 (2012).
  29. Kalina, T., et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia. 26 (9), 1986-2010 (2012).
  30. Peach, M., Marsh, N., Miskiewicz, E. I., MacPhee, D. J. . Solubilization of Proteins: The Importance of Lysis Buffer Choice. , 49-60 (2015).
  31. Olson, B. J. S. C. Assays for Determination of Protein Concentration. Current Protocols in Pharmacology. , A.3A.1-A.3A.32 (2016).
  32. Eslami, A., Lujan, J. Western Blotting: Sample Preparation to Detection. Journal of Visualized Experiments. (44), 1-2 (2010).
  33. Silva, J. M., McMahon, M. The Fastest Western in Town: A Contemporary Twist on the Classic Western Blot Analysis. Journal of Visualized Experiments. 84 (84), 1-8 (2014).
  34. Oldknow, K. J., et al. A Guide to Modern Quantitative Fluorescent Western Blotting with Troubleshooting Strategies. Journal of Visualized Experiments. 8 (93), 1-10 (2014).
  35. Serambeque, B. . Células estaminais do cancro do endométrio – a chave para o tratamento personalizado? [Stem Cells of Endometrial Cancer: The Key to Personalized Treatment?]. , (2018).
  36. Lee, C. H., Yu, C. C., Wang, B. Y., Chang, W. W. Tumorsphere as an effective in vitro platform for screening anti-cancer stem cell drugs. Oncotarget. 7 (2), (2015).
  37. De Luca, A., et al. Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells. Oncotarget. 6 (17), (2015).
  38. Masuda, A., et al. An improved method for isolation of epithelial and stromal cells from the human endometrium. Journal of Reproduction and Development. 62 (2), 213-218 (2016).
  39. Del Rio-Tsonis, K., et al. Facile isolation and the characterization of human retinal stem cells. Proceedings of the National Academy of Sciences. 101 (44), 15772-15777 (2004).
  40. Wang, L., Guo, H., Lin, C., Yang, L., Wang, X. I. Enrichment and characterization of cancer stem-like cells from a cervical cancer cell line. Molecular Medicine Reports. 9 (6), 2117-2123 (2014).
  41. Chen, Y. C., et al. High-throughput single-cell derived sphere formation for cancer stem-like cell identification and analysis. Scientific Reports. 6 (April), 1-12 (2016).
  42. Kim, J., Jung, J., Lee, S. J., Lee, J. S., Park, M. J. Cancer stem-like cells persist in established cell lines through autocrine activation of EGFR signaling. Oncology Letters. 3 (3), 607-612 (2012).
  43. Hwang-Verslues, W. W., et al. Multiple Lineages of Human Breast Cancer Stem/Progenitor Cells Identified by Profiling with Stem Cell Markers. PloS one. 4 (12), e8377 (2009).
  44. Feng, Y., et al. Metformin reverses stem cell-like HepG2 sphere formation and resistance to sorafenib by attenuating epithelial-mesenchymal transformation. Molecular Medicine Reports. 18 (4), 3866-3872 (2018).
  45. Wang, H., Paczulla, A., Lengerke, C. Evaluation of Stem Cell Properties in Human Ovarian Carcinoma Cells Using Multi and Single Cell-based Spheres Assays. Journal of Visualized Experiments. (95), 1-11 (2015).
  46. Stebbing, J., Lombardo, Y., Coombes, C. R., de Giorgio, A., Castellano, L. Mammosphere Formation Assay from Human Breast Cancer Tissues and Cell Lines. Journal of Visualized Experiments. (97), 1-5 (2015).
  47. Zhao, H., et al. Sphere-forming assay vs. organoid culture: Determining long-term stemness and the chemoresistant capacity of primary colorectal cancer cells. International Journal of Oncology. 54 (3), 893-904 (2019).
  48. Bagheri, V., et al. Isolation and identification of chemotherapy-enriched sphere-forming cells from a patient with gastric cancer. Journal of Cellular Physiology. 233 (10), 7036-7046 (2018).
  49. Kaowinn, S., Kaewpiboon, C., Koh, S., Kramer, O., Chung, Y. STAT1-HDAC4 signaling induces epithelial-mesenchymal transition and sphere formation of cancer cells overexpressing the oncogene, CUG2. Oncology Reports. , 2619-2627 (2018).
  50. Lonardo, E., Cioffi, M., Sancho, P., Crusz, S., Heeschen, C. Studying Pancreatic Cancer Stem Cell Characteristics for Developing New Treatment Strategies. Journal of Visualized Experiments. (100), 1-9 (2015).
  51. Lu, H., et al. Targeting cancer stem cell signature gene SMOC-2 Overcomes chemoresistance and inhibits cell proliferation of endometrial carcinoma. EBioMedicine. 40, 276-289 (2019).
  52. Bu, P., Chen, K. Y., Lipkin, S. M., Shen, X. Asymmetric division: a marker for cancer stem cells. Oncotarget. 4 (7), (2013).
  53. Islam, F., Qiao, B., Smith, R. A., Gopalan, V., Lam, A. K. Y. Cancer stem cell: fundamental experimental pathological concepts and updates. Experimental and molecular pathology. 98 (2), 184-191 (2015).
  54. Liu, W., et al. Comparative characterization of stem cell marker expression, metabolic activity and resistance to doxorubicin in adherent and spheroid cells derived from the canine prostate adenocarcinoma cell line CT1258. Anticancer research. 35 (4), 1917-1927 (2015).
  55. Broadley, K. W. R., et al. Side Population is Not Necessary or Sufficient for a Cancer Stem Cell Phenotype in Glioblastoma Multiforme. STEM CELLS. 29 (3), 452-461 (2011).
  56. Cojoc, M., Mäbert, K., Muders, M. H., Dubrovska, A. A role for cancer stem cells in therapy resistance: Cellular and molecular mechanisms. Seminars in Cancer Biology. 31, 16-27 (2015).
  57. Batlle, E., Clevers, H. Cancer stem cells revisited. Nature Medicine. 23 (10), 1124-1134 (2017).
  58. Zhang, X. L., Jia, Q., Lv, L., Deng, T., Gao, J. Tumorspheres Derived from HCC Cells are Enriched with Cancer Stem Cell-like Cells and Present High Chemoresistance Dependent on the Akt Pathway. Anti-cancer agents in medicinal chemistry. 15 (6), 755-763 (2015).
  59. Fukamachi, H., et al. CD49fhigh Cells Retain Sphere-Forming and Tumor-Initiating Activities in Human Gastric Tumors. PLoS ONE. 8 (8), e72438 (2013).
  60. Gao, M. Q., Choi, Y. P., Kang, S., Youn, J. H., Cho, N. H. CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene. 29 (18), 2672-2680 (2010).
  61. Cariati, M., et al. Alpha-6 integrin is necessary for the tumourigenicity of a stem cell-like subpopulation within the MCF7 breast cancer cell line. International Journal of Cancer. 122 (2), 298-304 (2008).
  62. López, J., Valdez-Morales, F. J., Benítez-Bribiesca, L., Cerbón, M., Carrancá, A. Normal and cancer stem cells of the human female reproductive system. Reproductive Biology and Endocrinology. 11 (1), 53 (2013).
  63. Alvero, A. B., et al. Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle. 8 (1), 158-166 (2009).
  64. Charafe-Jauffret, E., Ginestier, C., Birnbaum, D. Breast cancer stem cells: tools and models to rely on. BMC Cancer. 9 (1), 202 (2009).
  65. Leccia, F., et al. ABCG2, a novel antigen to sort luminal progenitors of BRCA1- breast cancer cells. Molecular Cancer. 13 (1), 213 (2014).
  66. Croker, A. K., Allan, A. L. Inhibition of aldehyde dehydrogenase (ALDH) activity reduces chemotherapy and radiation resistance of stem-like ALDHhiCD44+ human breast cancer cells. Breast Cancer Research and Treatment. 133 (1), 75-87 (2012).
  67. Sun, M., et al. Enhanced efficacy of chemotherapy for breast cancer stem cells by simultaneous suppression of multidrug resistance and antiapoptotic cellular defense. Acta Biomaterialia. 28, 171-182 (2015).
  68. Shao, J., Fan, W., Ma, B., Wu, Y. Breast cancer stem cells expressing different stem cell markers exhibit distinct biological characteristics. Molecular Medicine Reports. 14 (6), 4991-4998 (2016).
  69. Croker, A. K., et al. High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. Journal of Cellular and Molecular Medicine. 13 (8b), 2236-2252 (2009).
  70. Cheung, S. K. C., et al. Stage-specific embryonic antigen-3 (SSEA-3) and β3GalT5 are cancer specific and significant markers for breast cancer stem cells. Proceedings of the National Academy of Sciences. 113 (4), 960-965 (2016).
  71. Meyer, M. J., Fleming, J. M., Lin, A. F., Hussnain, S. A., Ginsburg, E., Vonderhaar, B. K. CD44 pos CD49f hi CD133/2 hi Defines Xenograft-Initiating Cells in Estrogen Receptor–Negative Breast Cancer. Cancer Research. 70 (11), 4624-4633 (2010).
  72. Ahn, S. M., Goode, R. J. A., Simpson, R. J. Stem cell markers: Insights from membrane proteomics?. PROTEOMICS. 8 (23-24), 4946-4957 (2008).
  73. Chefetz, I., et al. TLR2 enhances ovarian cancer stem cell self-renewal and promotes tumor repair and recurrence. Cell Cycle. 12 (3), 511-521 (2013).
  74. Alvero, A. B., et al. Stem-Like Ovarian Cancer Cells Can Serve as Tumor Vascular Progenitors. Stem Cells. 27 (10), 2405-2413 (2009).
  75. Yin, G., et al. Constitutive proteasomal degradation of TWIST-1 in epithelial–ovarian cancer stem cells impacts differentiation and metastatic potential. Oncogene. 32 (1), 39-49 (2013).
  76. Wei, X., et al. Mullerian inhibiting substance preferentially inhibits stem/progenitors in human ovarian cancer cell lines compared with chemotherapeutics. Proceedings of the National Academy of Sciences. 107 (44), 18874-18879 (2010).
  77. Meirelles, K., et al. Human ovarian cancer stem/progenitor cells are stimulated by doxorubicin but inhibited by Mullerian inhibiting substance. Proceedings of the National Academy of Sciences. 109 (7), 2358-2363 (2012).
  78. Shi, M. F., et al. Identification of cancer stem cell-like cells from human epithelial ovarian carcinoma cell line. Cellular and Molecular Life Sciences. 67 (22), 3915-3925 (2010).
  79. Meng, E., et al. CD44+/CD24− ovarian cancer cells demonstrate cancer stem cell properties and correlate to survival. Clinical & Experimental Metastasis. 29 (8), 939-948 (2012).
  80. Witt, A. E., et al. Identification of a cancer stem cell-specific function for the histone deacetylases, HDAC1 and HDAC7, in breast and ovarian. Oncogene. 36 (12), 1707-1720 (2017).
  81. Wu, H., Zhang, J., Shi, H. Expression of cancer stem markers could be influenced by silencing of p16 gene in HeLa cervical carcinoma cells. European journal of gynaecological oncology. 37 (2), 221-225 (2016).
  82. Huang, R., Rofstad, E. K. Cancer stem cells (CSCs), cervical CSCs and targeted therapies. Oncotarget. 8 (21), 35351-35367 (2017).
  83. Zhang, X., et al. Imatinib sensitizes endometrial cancer cells to cisplatin by targeting CD117-positive growth-competent cells. Cancer Letters. 345 (1), 106-114 (2014).
  84. Luo, L., et al. Ovarian cancer cells with the CD117 phenotype are highly tumorigenic and are related to chemotherapy outcome. Experimental and Molecular Pathology. 91 (2), 596-602 (2011).
  85. Zhao, P., Lu, Y., Jiang, X., Li, X. Clinicopathological significance and prognostic value of CD133 expression in triple-negative breast carcinoma. Cancer Science. 102 (5), 1107-1111 (2011).
  86. Ferrandina, G., et al. Expression of CD133-1 and CD133-2 in ovarian cancer. International Journal of Gynecologic Cancer. 18 (3), 506-514 (2008).
  87. Rutella, S., et al. Cells with characteristics of cancer stem/progenitor cells express the CD133 antigen in human endometrial tumors. Clinical cancer research an official journal of the American Association for Cancer Research. 15 (13), 4299-4311 (2009).
  88. Friel, A. M., et al. Epigenetic regulation of CD133 and tumorigenicity of CD133 positive and negative endometrial cancer cells. Reproductive Biology and Endocrinology. 8 (1), 147 (2010).
  89. Nakamura, M., et al. Prognostic impact of CD133 expression as a tumor-initiating cell marker in endometrial cancer. Human Pathology. 41 (11), 1516-1529 (2010).
  90. Saha, S. K., et al. KRT19 directly interacts with β-catenin/RAC1 complex to regulate NUMB-dependent NOTCH signaling pathway and breast cancer properties. Oncogene. 36 (3), 332-349 (2017).
  91. LV, X., Wang, Y., Song, Y., Pang, X., Li, H. Association between ALDH1+/CD133+ stem-like cells and tumor angiogenesis in invasive ductal breast carcinoma. Oncology Letters. 11 (3), 1750-1756 (2016).
  92. Ruscito, I., et al. Exploring the clonal evolution of CD133/aldehyde-dehydrogenase-1 (ALDH1)-positive cancer stem-like cells from primary to recurrent high-grade serous ovarian cancer (HGSOC). A study of the Ovarian Cancer Therapy–Innovative Models Prolong Survival (OCTIPS). European Journal of Cancer. 79, 214-225 (2017).
  93. Sun, Y., et al. Isolation of Stem-Like Cancer Cells in Primary Endometrial Cancer Using Cell Surface Markers CD133 and CXCR4. Translational Oncology. 10 (6), 976-987 (2017).
  94. Rahadiani, N., et al. Expression of aldehyde dehydrogenase 1 (ALDH1) in endometrioid adenocarcinoma and its clinical implications. Cancer Science. 102 (4), 903-908 (2011).
  95. Mamat, S., et al. Transcriptional Regulation of Aldehyde Dehydrogenase 1A1 Gene by Alternative Spliced Forms of Nuclear Factor Y in Tumorigenic Population of Endometrial Adenocarcinoma. Genes & Cancer. 2 (10), 979-984 (2011).
  96. Mukherjee, S. A., et al. Non-migratory tumorigenic intrinsic cancer stem cells ensure breast cancer metastasis by generation of CXCR4+ migrating cancer stem cells. Oncogene. 35 (37), 4937-4948 (2016).
  97. Lim, E., et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nature Medicine. 15 (8), 907-913 (2009).
  98. Liang, Y. J., et al. Interaction of glycosphingolipids GD3 and GD2 with growth factor receptors maintains breast cancer stem cell phenotype. Oncotarget. 8 (29), 47454-47473 (2017).

Play Video

Cite This Article
Laranjo, M., Carvalho, M. J., Serambeque, B., Alves, A., Marto, C. M., Silva, I., Paiva, A., Botelho, M. F. Obtaining Cancer Stem Cell Spheres from Gynecological and Breast Cancer Tumors. J. Vis. Exp. (157), e60022, doi:10.3791/60022 (2020).

View Video