Summary

用于细胞表征和分泌特征的人类脂肪组织微分裂

Published: October 20, 2019
doi:

Summary

在这里,我们介绍人类脂肪组织无酶微分裂使用封闭系统装置。这种新方法允许获得适合体内移植、体外培养以及进一步细胞分离和表征的脂肪组织的亚毫米簇。

Abstract

在过去十年中,脂肪组织移植已广泛应用于整形手术和矫形外科,以提高组织再生和/或再生。因此,采集和处理人类脂肪组织的技术已经发展,以便快速有效地获得大量的组织。其中,封闭系统技术代表一种创新和易于使用的系统,可以在短时间内和在同一干预(操作内)中收获、处理和重新注入精制脂肪组织。脂肪组织通过抽脂、洗涤、乳化、冲洗和机械切碎收集成0.3至0.8 mm的细胞簇。 机械碎片脂肪组织的自体移植在不同治疗中显示出显著疗效适应症,如美容医学和手术,骨科和普通外科。微碎片脂肪组织的特征表明,在脂肪细胞簇中存在完整的小血管;因此,血管内壁不受干扰。这些簇在血管内细胞中富集(即间质干细胞(MSC)祖先),体外分析表明,与酶衍生的MSCs相比,参与组织修复和再生的生长因子和细胞因子的释放增加。这表明,微碎片脂肪组织的优越治疗潜力是由较高的假定MSC频率和增强的分泌活性解释。这些添加的围细胞是否直接导致更高的生长因子和细胞因子生产尚不清楚。这种临床认可的程序允许移植假定的MSCs,而无需扩大和/或酶治疗,从而绕过了GMP指南的要求,并降低了基于细胞的治疗的成本。

Introduction

脂肪组织,长期用作重建和整容手术的填充物,最近已成为再生医学越来越流行,曾经被认为是间质干细胞(MSCs)1的来源。分离到单细胞悬浮液中的脂蛋白产生无脂肪细胞的基质血管分数(SVF),在患者中未改变使用,或者更常见的是,在MSCs2中培养数周。

然而,酶分离会破坏组织微环境,使邻近的调节细胞从假定的再生细胞中分离,这些细胞在体外培养中会大大改性。为了避免这种实验性的伪影和随之而来的功能改变,已经尝试处理脂肪组织用于治疗使用,同时保持其原生结构尽可能完整3,4。值得注意的是,机械组织破坏已经开始取代酶分离。为此,完全浸入式封闭系统通过筛过滤和钢大理石诱导的干扰序列,将脂吸气分光成亚毫米、无血和无油组织簇(如利波格姆)。微碎片脂肪组织的自体移植,使用这种封闭系统技术,已经成功地在多种适应症,包括化妆品,骨科,妇产科4,5,6,7,8,910,11,1213

使用闭合系统装置获得的人类微碎片脂肪组织(MAT)和同源性SVF的比较表明,在培养的血管/基质细胞分布和分泌活性方面,MAT含有更多的围细胞,即假定MSCs14,并分泌较多的生长因子和细胞因子15。

本文阐述了使用闭合系统装置对人皮下脂肪组织的无酶微分泌,以及对这种微缩脂肪组织的进一步处理,用于体外培养、免疫组织化学和FACS分析,为了识别存在的细胞类型和分泌的可溶性因子(图1)。所述方法安全地生成含有可行脂肪组织细胞群的脂肪衍生亚毫米有机物,适合进一步应用和研究。

Protocol

本研究中使用人体组织的道德批准来自东南苏格兰研究伦理委员会(参考:16/SS/0103)。 1. 皮下腹腔脂肪组织收集 注:手动裂隙吸气程序中使用的所有仪器均由微碎片装置的制造商提供。 在整个实验中,保持所有液体、容器、仪器和操作区域的不育。 将腹肌整形样品(由手术小组采购在无菌袋中,没有任何溶液)放在手术布?…

Representative Results

手动脂吸气的机械分离导致产生微碎片脂肪组织(MAT),由包围微血管网络的脂肪细胞聚集体组成(图3)。明胶嵌入和冷冻MAT的免疫荧光分析突出了这一结构,显示了血管网络标记的内皮细胞标记Ulex europaeus凝胶蛋白1(UEA-1)受体主要由小毛细血管组成(图 4.表达NG2或PDGFR+的围细胞呈正态分布,内皮细胞(图4)…

Discussion

本文利用闭合系统装置,将人体脂肪组织物理分馏成显示正常脂肪组织微解剖学的小簇。

手动吸气的人类皮下脂肪组织和盐水溶液被装入一个透明塑料圆柱体,里面装着大弹球式金属球,在设备剧烈手动晃动后,将脂肪破裂成亚毫米碎片。附加的过滤器和出口可消除碎屑、血液和游出脂,MAT 被收集到与设备相连的注射器中。在这里,MAT已经成功地进一步加工免疫组织化学,?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者希望感谢爱丁堡大学的克莱尔·克里尔和菲奥娜·罗西在流式细胞学方面的专家协助。我们还要感谢默里菲尔德医院的人员,他们通过提供组织标本做出了贡献。

这项工作得到了英国心脏基金会和利波格姆斯的资助,后者提供了脂肪组织处理试剂盒。人类成人组织样本是经东南苏格兰研究伦理委员会完全伦理许可采购的(参考:16/SS/0103)。

Materials

4% Buffered paraformaldehyde (PFA) VWR chemicals 9317.901
0.9% NaCl Solution Baxter 3KB7127
AlexaFluor 555 goat anti-mouse IgG  Life Technologies A21422
AlexaFluor 647 goat anti-Rabbit IgG Life Technologies  A21245
Ammonium chloride fisher chemicals 1158868
Antigent Diluent Life Technologies 3218
Anti-Mouse Ig, κ/Negative Control (BSA) Compensation Plus BD Biosciences 560497
Avidin/Biotin Blocking Kit Life Technologies 4303
BD LSR Fortessa 5-laser flow cytometer  BD Biosciences Laser 405nm (violet)/375nm (UV) – filter V450/50 for DAPI and V450 antibodies; Laser 561nm (Yellow-green) – filter YG582/15 for PE antibodies; Laser 405nm (violet)/375nm (UV) – filter V710/50 for BV711 antibodies 
Biotinylated Ulex europaeus lectin Vector Laboratories Vector-B1065
BV711 Mouse IgG1, k Isotype Control BD Biosciences 563044
CD146-BV711 BD Biosciences 563186
CD31-V450 BD Biosciences 561653
CD34-PE BD Biosciences 555822
CD45-V450 BD Biosciences 560367
DAPI Life Technologies D1306 stock concentration: 5mg/mL
Disposable liposuction cannula (LGI 13Gx185 mm – AR 13/18)   Lipogems  provided in the Lipogems surgical kit
Diva software 306 (v.6.0) BD Biosciences
DMEM, high glucose, GlutaMAX without sodium pyruvate Life Technologies 61965026
EGMTM-2 Endothelial Cell Growth Medium-2 BulletKitTM Lonza  CC-3156
Fetal Calf Serum (FCS) Sigma-Aldrich F2442
FlowJo (v.10.0) FlowJo
Fluoromount G SouthernBiotech 0100-01
Gelatin Acros Organics 410870025
Lipogems Surgical Kit Lipogems  LG SK 60
Mouse anti human- NG2 BD Biosciences 554275 stock concentration: 0.5 mg/mL
PE Mouse IgG1, κ Isotype Control BD Biosciences 555749
Penicillin-Streptomycin Sigma-Aldrich P4333
Phosphate buffered saline (PBS) Sigma-Aldrich D8537
Polystirene round bottom 5 mL tube with cell strainer snap cap  BD Biosciences 352235, 25/Pack
Polystyrene round bottom 5 mL tubes BD Biosciences 352003
Rabbit anti human – PDGFRb Abcam 32570 stock concentration: 0.15 mg/mL
Streptavidin conjugated-488 Life Technologies  S32354
Sucrose Sigma-Aldrich 84100-5kg
Tissue infiltration cannula (17GX185 mm-VG 17/18)  Lipogems  provided in the Lipogems surgical kit
Tris base fisher chemicals BP152-500
Type- II Collagenase Gibco 17101-015
V450 Mouse IgG1, κ Isotype Control BD Biosciences 560373
Widefield Zeiss observer Zeiss Objective used: Plan-Apo 20x/0.8
Zeiss Colibri7 LED light source ( LEDs: 385, 475, 555, 590, 630 nm) Zeiss DAPI: UV, excitation 385nm; 488: Blue, excitation 475nm;  555: Green, excitation 555nm;  647:Red, excitation 630nm 

References

  1. Zuk, P. A., et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering Journal. 7 (2), 211-228 (2001).
  2. Schäffler, A., et al. Concise review: Adipose tissue-derived stromal cells-basic and clinical implications for novel cell-based therapies. Stem Cells. 25 (4), 818-827 (2007).
  3. Bianchi, F., et al. A new non enzymatic method and device to obtain a fat tissue derivative highly enriched in pericyte-like elements by mild mechanical forces from human lipoaspirates. Cell Transplantation. 2, 2063-2077 (2013).
  4. Raffaini, M., Tremolada, C. Micro fractured and purified adipose tissue graft (Lipogems) can improve the orthognathic surgery outcomes both aesthetically and in postoperative healing. CellR4. 2 (4), (2014).
  5. Cestaro, G., et al. Intersphincteric anal lipofilling with micro-fragmented fat tissue for the treatment of faecal incontinence: preliminary results of three patients. Wideochir Inne Tech Maloinwazyjne. 10 (2), 337-341 (2015).
  6. Fantasia, J., et al. Microfractured and purified adipose tissue (Lipogems system) injections for treatment of atrophic vaginitis. Journal of Urology Research. 3 (7), 1073-1075 (2016).
  7. Saibene, A. M., et al. Transnasal endoscopic microfractured fat injection in glottic insufficiency. B-ENT. 11 (3), 229-234 (2015).
  8. Giori, A., et al. Recovery of function in anal incontinence after micro-fragmented fat graft (Lipogems) injection: two years follow up of the first 5 cases. CellR4. 3 (2), (2015).
  9. Tremolada, C., et al. Adipose mesenchymal stem cells and regenerative adipose tissue graft (Lipogems) for musculoskeletal regeneration. European Journal of Muscoloskeletal Diseases. 3 (2), 57-67 (2014).
  10. Striano, R. D., et al. Non-responsive knee pain with osteoarthritis and concurrent meniscal disease treated with autologous micro-fragmented adipose tissue under continuous ultrasound guidance. CellR4. 3 (5), (2015).
  11. Randelli, P., et al. Lipogems product treatment increases the proliferation rate of human tendon stem cells without affecting their stemness and differentiation capability. Stem Cells International. 2016, (2016).
  12. Bianchi, F., et al. Lipogems, a new modality off at tissue handling to enhance tissue repair in chronic hind limb ischemia. CellR4. 2 (6), (2014).
  13. Benzi, R., et al. Microfractured lipoaspirate may help oral bone and soft tissue regeneration: a case report. CellR4. 3 (3), (2015).
  14. Crisan, M., et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 3, 301-313 (2008).
  15. Vezzani, B., et al. Higher pericyte content and secretory activity of micro-fragmented human adipose tissue compared to enzymatically derived stromal vascular fraction. Stem Cells Translational Medicine. 7 (12), 876-886 (2018).
  16. Coleman, S. R. Structural fat grafting: more than a permanent filler. Plastic and Reconstructive Surgery. 118 (3), 108S-120S (2006).
  17. . Editorial: An update on organoid research. Nature Cell Biology. 20 (6), 633 (2018).
check_url/60117?article_type=t

Play Video

Cite This Article
Vezzani, B., Gomez-Salazar, M., Casamitjana, J., Tremolada, C., Péault, B. Human Adipose Tissue Micro-fragmentation for Cell Phenotyping and Secretome Characterization. J. Vis. Exp. (152), e60117, doi:10.3791/60117 (2019).

View Video