Summary

超结构保存细胞内膜蛋白定位电子显微镜分析的CryoAPEX方法

Published: February 27, 2020
doi:

Summary

该协议描述了CryoAPEX方法,其中APEX2标记膜蛋白可以通过传输电子显微镜在最佳保存的细胞超结构内进行局部化。

Abstract

信号转导和膜贩运等关键细胞事件依赖于细胞隔间内适当的蛋白质位置。因此,了解蛋白质的精确亚细胞定位对于回答许多生物学问题非常重要。寻求一个可靠的标签来识别蛋白质的定位,结合足够的细胞保存和染色,在历史上一直具有挑战性。电子显微镜(EM)成像的最新进展导致许多方法和策略的发展,以增加细胞保存和标签目标蛋白。一个相对较新的基于过氧化物酶的基因标记APEX2是可克隆的EM活性标签中一个有前途的领导者。近年来,随着高压冷冻(HPF)和低温脱水和通过冷冻替代(FS)染色的低温化的出现,传输电子显微镜(TEM)的样品制备也有所进步。HPF 和 FS 为 TEM 成像提供了出色的细胞超结构保存,仅次于对葡萄样品的直接低温成像。在这里,我们提出了一个用于cryoAPEX方法的协议,该方法将APEX2标签的使用与HPF和FS相结合。在此协议中,感兴趣的蛋白质被标记为APEX2,然后是化学固定和过氧化物酶反应。代替传统的染色和酒精脱水在室温下,样品是冷冻的,并通过FS在低温下进行脱水和染色。使用cryoAPEX,不仅可以在亚细胞腔内识别感兴趣的蛋白质,还可以解决结构保存膜内有关其拓扑的其他信息。我们表明,该方法可以提供足够高的分辨率,以破译细胞器流明内的蛋白质分布模式,并区分一个细胞器内蛋白质在靠近其他未标记的细胞器的分割。此外,低温APEX在程序上简单明了,适合在组织培养中生长的细胞。它在技术上没有比典型的低温和冷冻替代方法更具挑战性。CryoAPEX 广泛适用于任何可基因标记的膜蛋白的 TEM 分析。

Introduction

生物学研究通常包括解决细胞和细胞器内的亚细胞蛋白定位问题。免疫荧光显微镜提供了一个有用的低分辨率的蛋白质定位视图,和超分辨率成像的最新进展正在推动荧光标记蛋白质1,2,3的分辨率边界。然而,电子显微镜(EM)仍然是成像高分辨率细胞超结构的黄金标准,尽管蛋白质的标记是一个挑战。

从历史上看,一些EM方法被用来处理超结构蛋白质定位问题。最常用的方法之一是免疫电子显微镜(IEM),其中抗原特异性初级抗体用于检测感兴趣的蛋白质。EM信号是由与电子致密粒子结合的二级抗体产生的,最常见的是胶体金4,5。另外,与马萝卜过氧化物酶(HRP)等酶结合的抗体可用于产生电子致密的沉淀6、7、8。IEM 有两种主要方法,称为预嵌入和嵌入后标记。在预嵌入IEM中,抗体被直接引入细胞,这需要光固定和渗透细胞9,10,11。两个步骤都可能损坏超结构12,13。开发明显更小的抗体,由与1.4nm纳米金结合的抗体Fab片段组成,允许使用非常温和的渗透条件;然而,纳米金太小,不能直接可视化在TEM下,需要额外的增强步骤,成为可见的14,15,16。在嵌入后IEM中,抗体被应用于通过固定、脱水和嵌入树脂17而完全处理的细胞的薄部分。虽然这种方法避免了渗透步骤,但在整个样品制备过程中保持感兴趣的表位是具有挑战性的18,19,20。Tokuyasu 的光固定方法,其次是冷冻、冷冻切片和抗体检测,可提供改进的表位保存21、22。然而,低温超微切除术的技术要求,以及细胞中实现的次优对比度,都是缺点23。

使用基因编码标签消除了IEM在检测感兴趣的蛋白质方面的许多困难。有多种标签可供选择,包括HRP,铁蛋白,ReAsH,miniSOG,和金属洛西宁24,25,26,27,28,29,30,31,32。与以前的方法相比,每个方法都有优点,但每种方法也有阻止广泛使用的缺点。这些缺点包括:在细胞醇中HRP的不活动性,到铁蛋白标签的较大尺寸,ReAsH的光敏性,以及体积小,与金属洛酮的细胞染色缺乏兼容性。最近,一种来自抗坏血素过氧化物酶的蛋白质被设计成EM标签,名为APEX233,34。作为过氧化物酶,APEX2可以催化3,3’二氨基苯甲酸(DAB)的氧化,产生一种沉淀物,与四氧化二铵发生反应,以最小的扩散方式从感兴趣的蛋白质(小于25纳米)33,35提供局部EM对比度。与传统的基于HRP的方法不同,APEX2非常稳定,在所有细胞隔间中保持活跃33。样品可以使用传统的EM样品染色和方法为TEM处理,使周围结构的良好可视化33,34,36。由于其体积小、稳定性和多功能性,APEX2 已成为具有巨大潜力的 EM 标签。

上文讨论的许多方法要么不能或尚未与目前超结构保存、低温冷冻替代的最先进的技术相结合。因此,他们遭受缺乏膜保存和/或细胞染色,以确定准确的蛋白质定位。这必然限制了对可获取数据的解析和解释。高压冷冻(HPF)的冷冻包括高压(±2,100bar)在液氮中快速冷冻样品,导致水性样品的结晶,而不是水样结晶,从而将细胞保留在近原生状态37、38、39。HPF 随后是冷冻替代 (FS),丙酮中的低温 (-90 °C) 脱水与典型的 EM 染色剂(如四氧化二氮和醋酸二铵)结合孵化。与传统的化学固定(一种较长的过程可能导致人工制品)和酒精脱水在室温或冰上(可导致脂质和糖的提取)相比,HPF 和 FS 具有明显的优势,因此最好与最佳 EM 标记相结合,用于蛋白质检测。

HPF/FS 未与 APEX2 标签结合的一个原因是,轻化学固定是过氧化物酶反应的先决条件,从而限制了 DAB 反应产物的扩散。在APEX2研究中,到目前为止,固定和过氧化物酶反应遵循传统的EM方法染色和酒精脱水33,36。然而,已经表明,使用HPF/FS进行化学固定后,在保存方面比传统的化学固定和酒精脱水仅40具有明显的优势。传统TEM样品中超结构完整性的丧失似乎与固定性联系较少,而脱水通常使用酒精在室温或冰上进行,并可能导致脂质和糖的提取40,41。为了开发CryoAPEX方法,我们假设化学固定和过氧化物酶反应,其次是HPF和FS,在超结构保存方面会产生最佳结果。

在这里,我们介绍的cryoAPEX协议,它结合了APEX2标记与低温和冻结替代方法(图1)。这种简单的协议包括APEX2标记的感兴趣蛋白的转染、细胞的化学固定和过氧化物酶反应。然后执行 HPF 和 FS,然后执行典型的树脂嵌入和薄切片。TEM成像显示,该方法对超结构的保存效果非常好。此外,还观察到内质性视网膜(ER)流明蛋白的高分辨率亚细胞定位和空间分布。该方法对于检测细胞内膜蛋白定位进行电子显微镜分析具有广泛应用能力。在我们的手中,该方法已经成功地适用于组织培养中生长的各种细胞系,包括HEK-293T(人类胚胎肾)、HeLa(人类宫颈癌)、Cos7(非洲绿猴肾成纤维细胞)和BHK(婴儿仓鼠肾)。详细说明如下,使用HEK-293T细胞。

Protocol

1. 细胞培养和转染 种子HEK-293T细胞在直径60毫米或更大的组织培养皿上,在37°C和5%CO2的细胞培养箱中生长到60%~90%的汇合。 根据制造商的指示,使用转染试剂(参见材料表)使用APEX2标记的哺乳动物表达质粒转染细胞。 在转染后12~15小时,用磷酸盐缓冲盐水(PBS)洗涤细胞一次。用PBS轻轻清洗,从盘子里去除细胞。如果需要给定的细胞类型,可以使用分?…

Representative Results

为了将使用cryoAPEX方法的超结构保存与传统固定和脱水进行比较,我们制备了样品,其中内质视网膜膜(ERM;ER膜)肽被APEX2标记并转染成HEK-293T细胞。ERM-APEX2 对 ER 的细胞质面进行本地化,并将 ER 结构重塑为形态上截然不同的结构,称为组织平滑 ER (OSER) 34、42、43 。OSER 形态包括光滑、平行、密集堆叠膜的区域,这些膜是比较…

Discussion

此处介绍的 CryoAPEX 协议提供了一种可靠的方法来描述细胞环境中膜蛋白的定位。使用基因编码的APEX2标签不仅提供感兴趣的蛋白质的精确定位,而且使用低温和低温脱水为周围的细胞超结构提供了出色的保存和染色。综合起来,这些方法是一个强大的工具,用于在其亚细胞上下文中高精度地本地化蛋白质。

该方法的症结在于,传统TEM方法制备后超结构损失主要来自脱水步骤?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这里描述的协议源于森古普塔等人发表的《细胞科学杂志》,132 (6), jcs222315 (2019)48。这项工作得到了国家卫生研究院的R01GM10092(至S.M.)和AI081077(R.V.S.)的资助,来自印第安纳州临床和转化科学研究所的CTSI-106564(至S.M.)和普渡大学炎症、免疫学和传染病研究所的PI4D-209263(至S.M.)。

Materials

3,3'-Diaminobenzidine tetrahydrochloride hydrate Sigma-Aldrich D5637-1G
Acetone (Glass Distilled) Electron Microscopy Sciences 10016
Beakers; Plastic, Disposable 120 cc Electron Microscopy Sciences 60952
Bovine Serum Albumin Sigma-Aldrich A7906-100G
Cryogenic Storage Vials, 2 mL VWR 82050-168
Dulbecco's Modified Eagle's Medium Corning 10-017-CV
Durcupan ACM Fluka, single component A, M epoxy resin Sigma-Aldrich 44611-500ML
Durcupan ACM Fluka, single component B, hardener 964 Sigma-Aldrich 44612-500ML
Durcupan ACM Fluka, single component C, accelerator 960 (DY 060) Sigma-Aldrich 44613-100ML
Durcupan ACM Fluka,single component D Sigma-Aldrich 44614-100ML
Embedding mold, standard flat, 14 mm x 5 mm x 6 mm Electron Microscopy Sciences 70901
Embedding mold, standard flat, 14 mm x 5 mm x 4 mm Electron Microscopy Sciences 70900
Fetal Bovine Serum; Nu-Serum IV Growth Medium Supplement Corning 355104
Glass Knife Boats, 6.4 mm Electron Microscopy Sciences 71008
Glass Knifemaker Leica Microsystems EM KMR3
Glutaraldehyde 10% Aqueous Solution Electron Microscopy Sciences 16120
HEK 293 Cells ATCC CRL-1573
High Pressure Freezer with Rapid Transfer System Leica Microsystems EM PACT2 Archived Product Replaced by Leica EM ICE
Hydrogen Peroxide 30% Solution Fisher Scientific 50-266-27
Lipofectamine 3000 Transfection Reagent ThermoFisher Scientific L3000015
Membrane carrier for EM PACT2, 1.5 mm x 0.1 mm Mager Scientific 16707898
Osmium Tetroxide, crystalline Electron Microscopy Sciences 19110
Phosphate Buffered Saline (PBS) 20X, Ultra Pure Grade VWR 97062-950
Plastic Capsules for AFS/AFS2, 5 mm x 15 mm Mager Scientific 16702738
Slot grids, 2 x 1 mm copper with Formvar support film Electron Microscopy Sciences FF2010-Cu
Sodium Cacodylate Buffer, 0.2 M, pH 7.4 Electron Microscopy Sciences 102090-962
Sodium Hydroxide, Pellet 500 G (ACS) Avantor Macron Fine Chemicals 7708-10
Tannic Acid Electron Microscopy Sciences 21710
Tissue Culture Dishes, Polystyrene, Sterile, Corning, 100 mm VWR 25382-166
Ultra Glass Knife Strips Electron Microscopy Sciences 71012
Ultramicrotome Leica Microsystems EM UC7
Uranyl Acetate Dihydrate Electron Microscopy Sciences 22400

References

  1. Huang, B., Bates, M., Zhuang, X. Super-Resolution Fluorescence Microscopy. Annual Review of Biochemistry. 78, 993-1016 (2009).
  2. Sydor, A. M., Czymmek, K. J., Puchner, E. M., Mennella, V. Super-Resolution Microscopy From Single Molecules to Supramolecular Assemblies. Trends in Cell Biology. 25, 730-748 (2015).
  3. Vangindertael, J., et al. An introduction to optical super-resolution microscopy for the adventurous biologist. Methods and Applications in Fluorescence. 6, 022003 (2018).
  4. De Mey, J., Moeremans, M., Geuens, G., Nuydens, R., De Brabander, M. High resolution light and electron microscopic localization of tubulin with the IGS (Immuno Gold Staining) method. Cell Biology International Reports. 5, 889-899 (1981).
  5. Faulk, W., Taylor, G. An immunocolloid method for the electron microscope. Immunochemistry. 8, 1081-1083 (1971).
  6. Brown, W. J., Constantinescu, E., Farquhar, M. G. Redistribution of Mannose-6-Phosphate Receptors Induced by Tunicamycin and Chloroquine. The Journal of Cell Biology. 99, 320-326 (1984).
  7. Brown, W. J., Farquhar, M. G. The Mannose-6-phosphate Enzymes Is Concentrated Receptor for Lysosomal in Cis Golgi Cisternae. Cell. 36, 295-307 (1984).
  8. Sternberger, L. A., Hardy, P. H., Cuculis, J. J., Meyer, H. G. The unlabeled antibody enzyme method of immunohistochemistry. The Journal of Histochemistry and Cytochemistry. 18, 315-333 (1970).
  9. Oliver, C., Oliver, C., Jamur, M. C. Pre-embedding Labeling Methods. Immunocytochemical Methods and Protocols. 588, 381-386 (2010).
  10. Polishchuk, E. V., Polishchuk, R. S. Pre-embedding labeling for subcellular detection of molecules with electron microscopy. Tissue and Cell. 57, 103-110 (2019).
  11. Polishchuk, R. S., Polishchuk, E. V., Luini, A., Mueller-Reichert, T., Verkade, P. Visualizing Live Dynamics and Ultrastructure of Intracellular Organelles with Preembedding Correlative Light-Electron Microscopy. Correlative Light and Electron Microscopy. 111, 21-35 (2012).
  12. Humbel, B. M., De Jong, M. D. M., Müller, W. H., Verkleij, A. J. Pre-embedding immunolabeling for electron microscopy: An evaluation of permeabilization methods and markers. Microscopy Research and Technique. 42, 43-58 (1998).
  13. Schnell, U., Dijk, F., Sjollema, K. A., Giepmans, B. N. G. Immunolabeling artifacts and the need for live-cell imaging. Nature Methods. 9, 152-158 (2012).
  14. Hainfeld, J. F., Powell, R. D. New Frontiers in Gold Labeling. The Journal of Histochemistry and Cytochemistry. 48, 471-480 (2000).
  15. Hainfeld, J. F., Furuya, F. R. A 1.4-nm Gold Cluster Covalently Attached to Antibodies Improves Immunolabeling. The Journal of Histochemistry and Cytochemistry. 40, 177-184 (1992).
  16. Baschong, W., Stierhof, Y. Preparation, Use, and Enlargement of Ultrasmall Gold Particles in Immunoelectron Microscopy. Microscopy Research and Technique. 42, 66-79 (1998).
  17. Roth, J., Bendayan, M., Orci, L. Ultrastructural loclaization of intracellular antigens by the use of Protein A-gold complex. The Journal of Histochemistry and Cytochemistry. 26, 1074-1081 (1978).
  18. Armbruster, B. L., et al. Specimen preparation for electron microscopy using low temperature embedding resins. Journal of Microscopy. 126, 77-85 (1982).
  19. Fowler, C. B., Leary, T. J. O., Mason, J. T. Modeling formalin fixation and histological processing with ribonuclease A effects of ethanol dehydration on reversal of formaldehyde cross-links. Laboratory Investigation. 88, 785-791 (2008).
  20. Newman, G. R., Hobot, J. A. Modern Acrylics for Post-embedding Immunostaining Techniques. The Journal of Histochemistry and Cytochemistry. 35, 971-981 (1987).
  21. Tokuyasu, K. T. A technique for ultracryotomy of cell suspensions and tissues. The Journal of Cell Biology. 57, 551-565 (1973).
  22. Tokuyasu, K. T. Application of cryoultramicrotomy to immunocytochemistry. Journal of Microscopy. 143, 139-149 (1986).
  23. Möbius, W., Posthuma, G. Sugar and ice Immunoelectron microscopy using cryosections according to the Tokuyasu method. Tissue and Cell. 57, 90-102 (2019).
  24. Gaietta, G., et al. Multicolor and Electron Microscopic Imaging of Connexin Trafficking. Science. 296, 503-508 (2002).
  25. Uttamapinant, C., et al. A fluorophore ligase for site-specific protein labeling inside living cells. Proceedings of the National Academy of Sciences of the United States of America. 107, 10914-10919 (2010).
  26. Porstmann, B., Porstmann, T., Nugel, E., Evers, U. Which of the Commonly Used Marker Enzymes Gives the Best Results in Colorimetric and Fluorimetric Enzyme Immunoassays: Horseradish Peroxidase, Alkaline Phosphatase or Beta-Galactosidase. Journal of Immunological Methods. 79, 27-37 (1985).
  27. Shu, X., et al. A Genetically Encoded Tag for Correlated Light and Electron Microscopy of Intact Cells, Tissues, and Organisms. PLoS Biology. 9, 1001041 (2011).
  28. Mercogliano, C. P., DeRosier, D. J. Concatenated metallothionein as a clonable gold label for electron microscopy. Journal of Structural Biology. 160, 70-82 (2007).
  29. Wang, Q., Mercogliano, C. P., Löwe, J. A ferritin-based label for cellular electron cryotomography. Structure. 19, 147-154 (2011).
  30. Risco, C., et al. Specific, sensitive, high-resolution detection of protein molecules in eukaryotic cells using metal-tagging transmission electron microscopy. Structure. 20, 759-766 (2012).
  31. Hopkins, C., Gibson, A., Stinchcombe, J., Futter, C. E., Thorner, J., Emr, S. D., Abelson, J. N. Chimeric Molecules Employing Horseradish Peroxidase as Reporter Enzyme for Protein Localization in the Electron Microscope. Methods in Enzymology. 327, 35-45 (2000).
  32. Hoffmann, C., et al. Fluorescent labeling of tetrcysteine-tagged proteins in intact cells. Nature Protocols. 5, 1666-1677 (2010).
  33. Martell, J. D., et al. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nature Biotechnology. 30, 1143-1150 (2012).
  34. Lam, S. S., et al. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nature Methods. 12, (2015).
  35. Ariotti, N., et al. Modular Detection of GFP-Labeled Proteins for Rapid Screening by Electron Microscopy in Cells and Organisms. Developmental Cell. 35, 513-525 (2015).
  36. Martell, J. D., Deerinck, T. J., Lam, S. S., Ellisman, M. H., Ting, A. Y. Electron microscopy using the genetically encoded APEX2 tag in cultured mammalian cells. Nature Protocols. 12, 1792-1816 (2017).
  37. Studer, D., Humbel, B. M., Chiquet, M. Electron microscopy of high pressure frozen samples: Bridging the gap between cellular ultrastructure and atomic resolution. Histochemistry and Cell Biology. 130, 877-889 (2008).
  38. Dahl, R., Staehelin, L. A. High-pressure Freezing for the Preservation of Biological Structure: Theory and Practice. Journal of Electron Microscopy Technique. 13, 165-174 (1989).
  39. McDonald, K. L., Hajibagheri, N. High-Pressure Freezing for Preservation of High Resolution Fine Structure and Antigenicity for Immunolabeling. Electron Microscopy Methods and Protocols. 117, 77-97 (1999).
  40. Sosinsky, G. E., et al. The combination of chemical fixation procedures with high pressure freezing and freeze substitution preserves highly labile tissue ultrastructure for electron tomography applications. Journal of Structural Biology. 161, 359-371 (2008).
  41. Korn, E. D., Weisman, R. A. Loss of lipids during preparation of amoebae for electron microscopy. Biochemica et Biophysica Acta. 116, 309-316 (1966).
  42. Snapp, E. L., et al. Formation of stacked ER cisternae by low affinity protein interactions. Journal of Cell Biology. 163, 257-269 (2003).
  43. Sandig, G., et al. Regulation of endoplasmic reticulum biogenesis in response to cytochrome P450 overproduction. Drug Metabolism Reviews. 31, 393-410 (1999).
  44. Faber, P. W., et al. Huntingtin interacts with a family of WW domain proteins. Human Molecular Genetics. 7, 1463-1474 (1998).
  45. Worby, C. A., et al. Article The Fic Domain Regulation of Cell Signaling by Adenylylation. Molecular Cell. 34, 93-103 (2009).
  46. Sanyal, A., et al. A Novel Link between Fic (Filamentation Induced by cAMP) – mediated Adenylylation / AMPylation and the Unfolded Protein Response. The Journal of Biological Chemistry. 290, 8482-8499 (2015).
  47. Mattoo, S., et al. Comparative Analysis of Histophilus somni Immunoglobulin-binding Protein A (IbpA) with Other Fic Domain-containing Enzymes Reveals Differences in Substrate and Nucleotide Specificities. The Journal of Biological Chemistry. 286, 32834-32842 (2011).
  48. Sengupta, R., Poderycki, M. J., Mattoo, S. CryoAPEX – an electron tomography tool for subcellular localization of membrane proteins. Journal of Cell Science. 132, 222315 (2019).
  49. Tsang, T. K., et al. High-quality ultrastructural preservation using cryofixation for 3D electron microscopy of genetically labeled tissues. eLife. 7, 1-23 (2018).
  50. Giddings, T. H. Freeze-substitution protocols for improved visualization of membranes in high-pressure frozen samples. Journal of Microscopy. 212, 53-61 (2003).
  51. McDonald, K. L., Webb, R. I. Freeze substitution in 3 hours or less. Journal of Microscopy. 243, 227-233 (2011).
  52. McDonald, K. Cryopreparation methods for electron microscopy of selected model systems. Methods in Cell Biology. 79, 23-56 (2007).
  53. Buser, C., Walther, P. Freeze-substitution: the addition of water to polar solvents enhances the retention of structure and acts at temperatures around -60 degrees C. Journal of Microscopy. 230, 268-277 (2008).
  54. Jiménez, N., et al. Tannic acid-mediated osmium impregnation after freeze-substitution A strategy to enhance membrane contrast for electron tomography. Journal of Structural Biology. 166, 103-106 (2009).
  55. Han, Y., et al. Directed Evolution of Split APEX2 Peroxidase. ACS chemical biology. 14, 619-635 (2019).
  56. Kuipers, J., Van Ham, T. J., Kalicharan, R. D., Schnell, U., Giepmans, B. N. G. FLIPPER, a combinatorial probe for correlated live imaging and electron microscopy, allows identification and quantitative analysis of various cells and organelles. Cell Tissue Research. 360, 61-70 (2015).
  57. Zhou, Y., et al. Expanding APEX2 Substrates for Spatial-specific Labeling of Nucleic Acids and Proteins in Living Cells. Angewandte Chemie. , (2019).
  58. Joesch, M., et al. Reconstruction of genetically identified neurons imaged by serial-section electron microscopy. eLife. 5, 1-13 (2016).
check_url/60677?article_type=t

Play Video

Cite This Article
Mihelc, E. M., Angel, S., Stahelin, R. V., Mattoo, S. The CryoAPEX Method for Electron Microscopy Analysis of Membrane Protein Localization Within Ultrastructurally-Preserved Cells. J. Vis. Exp. (156), e60677, doi:10.3791/60677 (2020).

View Video