Summary

分析阿拉伯恐惧症中渗透应激信号的磷蛋白分析策略

Published: June 25, 2020
doi:

Summary

这里介绍的是一种磷蛋白法,即停止和去提取基于磷蛋白的尖端,它提供了高通量和深度覆盖 的阿拉比多普西 磷蛋白。这种方法概述了阿拉伯语中渗透应激信号 的概述。

Abstract

蛋白质磷化对于控制渗透条件下的酶活性和基因表达至关重要。基于质谱(MS)的磷蛋白经济学改变了研究植物信号转导的方法。然而,需要大量的起始材料和更长的MS测量时间来达到覆盖深度,一直是全球植物磷蛋白变化高通量研究的限制因素。为了提高植物磷蛋白的灵敏度和通量,我们开发了一种停止和去提取(阶段)尖端的磷蛋白经济学方法,并结合Tandem质量标签(TMT)标签,对植物磷酸化扰动进行快速、全面的分析,以应对渗透应激。利用阶段尖端技术的简单性和高通量,整个过程大约需要一个小时,使用两个提示完成磷肽的浓缩、分馏和样品清洁步骤,表明该方法易于使用且效率高。这种方法不仅提供了深入的植物磷蛋白学分析(+11,000 磷肽识别),而且还显示了相邻分数之间的卓越分离效率(+lt; 5%重叠)。此外,还利用TMT标签实现了多路复用,以量化野生型和 snrk2 脱钩突变植物的磷蛋白变化。这种方法已成功地用于揭示拉夫样激酶的磷化事件,以回应渗透应激,这揭示了对陆地植物早期渗透信号的理解。

Introduction

高盐度、低温和干旱引起渗透应力,这是影响植物生产力的主要环境因素蛋白质磷化是植物对渗透应激3、4、5的反应中最重要的转化后修饰之一。SNF1相关的蛋白激酶2s(SnRK2s)参与渗透应激信号6。SnRK2家族的10名成员中有9人因对渗透性压力7、8表现出显著的激活作用。snrk2.1/2/3/4/5/6/7/8/9/10突变(snrk2-dec)突变在所有 10 SnRK2 显示对渗透应激的超敏性。在snrk2-dec突变体中,渗透应激引起的不溶胶1,4,5-三磷酸盐(IP3)、苦酸(ABA)生物合成和基因表达的积累被强烈减少,突出了SnRK2s在渗透应激反应中的重要作用然而,目前还不清楚SnRK2s激酶是如何调节这些生物过程的。分析针对渗透应激的磷蛋白变化是弥合这一差距和描绘植物中渗透应激触发防御机制的有效方法。

质谱学(MS)是测绘植物磷蛋白9一项强有力的技术。然而,由于植物蛋白质组的动态范围和植物草酸盐4的复杂性,植物磷蛋白的定性仍然是一个挑战。为了克服这些挑战,我们开发了一种通用的植物磷蛋白工作流程,它消除了光合作用颜料和次要代谢物等不必要的干扰,并实现了植物磷蛋白10的深度覆盖。在MS分析11、12、13、14、15、16之前,已经开发出几种磷肽浓缩方法如固定金属离子亲和度色谱(IMAC)和金属氧化物色谱(MOC)。酸性非磷肽与磷肽共同净化是磷肽检测的主要干扰物。此前,我们标准化了 IMAC 装载缓冲区的 pH 值和有机酸浓度,以消除非磷肽的结合,获得 90% 以上的浓缩特异性,绕过了分馏前步骤11。

磷肽富集和分馏多步骤过程中的样品流失妨碍了磷肽鉴定的敏感性和磷蛋白覆盖深度。停止和去提取技巧(阶段提示)是移液器提示,包含小磁盘,以盖住尖端的末端,它可以与色谱相结合的肽分馏和清洁17。避免样品在管子之间转移,可以最大限度地减少阶段提示过程中的样品损失。我们已经成功地在Ga3+-IMAC和Fe3+-IMAC中实现了阶段提示,将低丰富的多磷酸肽与单磷酸肽分离出来,从而提高了人类磷蛋白15的深度。此外,与强 cation 交换 (SCX) 和强阴离子交换 (SAX) 色谱18相比,高 pH 反相 (Hp-RP) 阶段尖端的使用表明人类膜蛋白质组的覆盖范围更广。因此,集成 IMAC 和 Hp-RP 阶段尖端技术可以提高植物磷蛋白的覆盖率,具有简单性、高特异性和高吞吐量。我们已经证明,这一战略从 阿拉比多普西 斯幼苗中确定了2万多个磷化位点,代表了植物磷蛋白体19的深度。

在这里,我们报告了阿拉伯磷蛋白分析阶段基于尖端的磷蛋白化方案 此工作流程用于研究野生型和 snrk2-dec 突变幼苗的磷蛋白扰动,以应对渗透应激。磷蛋白分析显示,磷化位点与激酶活化和早期渗透应激信号有关。对野生型和 snrk2-dec 突变磷蛋白组数据的比较分析,发现了一种类似Raf的激酶(RAF)-SnRK2激酶级联,在高植物的奥斯莫尔应激信号中起着关键作用。

Protocol

1. 样品准备 在铝箔中收获控制和应力处理的幼苗(1克),并闪过在液氮中冷冻样品。注意:通常从两周大的幼苗中观察到比成熟植物高的蛋白质浓度。一克幼苗产生大约10毫克的蛋白质解析,这足以进行MS分析。所有离心步骤在第 1 步中均在 16,000 x g 下进行。 用砂浆和充满液氮的害虫将冷冻幼苗磨成细粉。 添加1 mL的裂解缓冲区((6 M瓜尼丁-HCl在100 mM特里斯-HCl?…

Representative Results

为了演示此工作流程的性能,我们利用 IMAC 阶段提示加上 Hp-RP 阶段尖端分馏来测量野生型和 snrk2-dec 突变幼苗中具有或无需曼尼托治疗的磷蛋白变化 30 分钟。每个样本都是在生物三元体中进行的,实验工作流程以 图1表示。每个样品的消化肽(400微克)被标记为一个TMT-6plex通道,汇总和脱盐。磷肽使用 IMAC 阶段尖端进一步丰富,随后 Hp-RP 阶段尖端将纯化磷肽分成八个…

Discussion

植物蛋白质组和磷蛋白质组的动态范围和复杂性仍然是磷蛋白分析深度的限制因素。尽管单运行LC-MS/MS分析能够识别10,000个磷化位点21,22,但整个植物磷蛋白的覆盖率仍然有限。因此,在分析植物信号网络应对环境压力的全球视图时,需要提供高灵敏度和卓越分离效率的磷蛋白工作流。商用高压液体色谱(HPLC)柱基色谱是MS分析23、24</sup…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了中国科学院战略优先研究项目格兰特XDB27040106的支持。

Materials

1.5 mL tube eppendorf 22431081 Protein LoBind, 1.5 mL, PCR clean, colorless, 100 tubes
200 µL pipet tip Gilson F1739311
2-chloroacetamide Sigma-Aldrich C0267
acetic acid Sigma-Aldrich 5438080100
acetonitrile Sigma-Aldrich 271004
ammonium hydroxide Sigma-Aldrich 338818
ammonium phosphate monbasic Sigma-Aldrich 216003
BCA Protein Assay Kit Thermo Fisher Scientific 23227
blunt-ended needle Hamilton 90516 Kel-F hub (KF), point style 3, gauge 16
C18-AQ beads Dr. Maisch ReproSil-Pur-C18-AQ 5 µm
C8 Empore disk 3 M 2214 47 mm
Centrifuge eppendorf 22620444
chloroform Sigma-Aldrich CX1058
data analysis software Perseus 1.6.2.1 https://maxquant.net/perseus/
ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich
formic acid Sigma-Aldrich 5330020050
Frits Agilent 12131024 Frits for SPE Cartridges
Guanidine hydrochloride Sigma-Aldrich 50933
H2O Sigma-Aldrich 1153334000
HEPES Sigma-Aldrich H3375
Iron (III) chloride Sigma-Aldrich 157740
LTQ-orbitrap Thermo Fisher Scientific Velos Pro
mass spectrometer Thermo Fisher Scientific LTQ-Orbitrap Velos Pro
methanol Sigma-Aldrich 34860
nano LC Thermo Fisher Scientific Easy-nLC 1000
Ni-NTA spin column Qiagen 31014
N-Lauroylsarcosine sodium salt Sigma-Aldrich L9150
plunger Hamilton 1122-01 Plunger assembly N, RN, LT, LTN for model 1702 (25 μl)
search engine software MaxQuant 1.5.4.1 https://www.maxquant.org
SEP-PAK Cartridge 50 mg Waters WAT054960
sodium deoxycholate Sigma-Aldrich D6750
SpeedVac Thermo Fisher Scientific SPD121P
TMT 6-plex Thermo Fisher Scientific 90061
Triethylammonium bicarbonate buffer Sigma-Aldrich T7408
Trifluoroacetic acid Sigma-Aldrich 91707
Tris(2-carboxyethyl)phosphine hydrochloride Sigma-Aldrich C4706
Trizma hydrochloride Sigma-Aldrich T3253

References

  1. Hasegawa, P. M., Bressan, R. A., Zhu, J. K., Bohnert, H. J. Plant cellular and molecular responses to high salinity. Annual Review Plant Physiology Plant Molecualr Biology. 51, 463-499 (2000).
  2. Janmohammadi, M., Zolla, L., Rinalducci, S. Low temperature tolerance in plants: Changes at the protein level. Phytochemistry. 117, 76-89 (2015).
  3. Umezawa, T., Takahashi, F., Shinozaki, K. Phosphorylation networks in the abscisic acid signaling pathway. Enzymes. 35, 27-56 (2014).
  4. Silva-Sanchez, C., Li, H., Chen, S. Recent advances and challenges in plant phosphoproteomics. Proteomics. 15 (5-6), 1127-1141 (2015).
  5. Wang, P., et al. Mapping proteome-wide targets of protein kinases in plant stress responses. Proceedings of the National Academy of Sciences of the United States of America. 117 (6), 3270-3280 (2020).
  6. Fujii, H., Verslues, P. E., Zhu, J. K. Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proceedings of the National Academy of Sciences of the United States of America. 108 (4), 1717-1722 (2011).
  7. Wang, P., et al. Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proceedings of the National Academy of Sciences of the United States of America. 110 (27), 11205-11210 (2013).
  8. Boudsocq, M., Barbier-Brygoo, H., Lauriere, C. Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. Journal of Biological Chemistry. 279 (40), 41758-41766 (2004).
  9. Li, J., Silva-Sanchez, C., Zhang, T., Chen, S., Li, H. Phosphoproteomics technologies and applications in plant biology research. Frontiers in Plant Science. 6, 430 (2015).
  10. Hsu, C. C., et al. Universal plant phosphoproteomics workflow and its application to Tomato signaling in response to cold stress. Molecular & Cell Proteomics. 17 (10), 2068 (2018).
  11. Tsai, C. F., et al. Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. Journal of Proteome Research. 7 (9), 4058-4069 (2008).
  12. Larsen, M. R., Thingholm, T. E., Jensen, O. N., Roepstorff, P., Jorgensen, T. J. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Molecular & Cell Proteomics. 4 (7), 873-886 (2005).
  13. Ruprecht, B., et al. Comprehensive and reproducible phosphopeptide enrichment using iron immobilized metal ion affinity chromatography (Fe-IMAC) columns. Molecular & Cell Proteomics. 14 (1), 205-215 (2015).
  14. Sugiyama, N., et al. Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Molecular & Cell Proteomics. 6 (6), 1103-1109 (2007).
  15. Tsai, C. F., et al. Sequential phosphoproteomic enrichment through complementary metal-directed immobilized metal ion affinity chromatography. Analytical Chemistry. 86 (1), 685-693 (2014).
  16. Zhou, H., et al. Enhancing the identification of phosphopeptides from putative basophilic kinase substrates using Ti (IV) based IMAC enrichment. Molecular & Cell Proteomics. 10 (10), (2011).
  17. Rappsilber, J., Mann, M., Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nature Protocols. 2 (8), 1896-1906 (2007).
  18. Dimayacyac-Esleta, B. R., et al. Rapid high-pH reverse phase stageTip for sensitive small-scale membrane proteomic profiling. Analytical Chemistry. 87 (24), 12016-12023 (2015).
  19. Wang, P., et al. Reciprocal regulation of the TOR Kinase and ABA receptor balances plant growth and stress response. Molecular Cell. 69 (1), 100-112 (2018).
  20. Lin, Z., et al. A RAF-SnRK2 kinase cascade mediates early osmotic stress signaling in higher plants. Nature Communications. 11 (1), 613 (2020).
  21. Humphrey, S. J., Azimifar, S. B., Mann, M. High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics. Nature Biotechnology. 33 (9), 990-995 (2015).
  22. Bekker-Jensen, D. B., et al. An optimized shotgun strategy for the rapid generation of comprehensive human proteomes. Cell Systems. 4 (6), 587-599 (2017).
  23. Possemato, A. P., et al. Multiplexed phosphoproteomic profiling using titanium dioxide and immunoaffinity enrichments reveals complementary phosphorylation events. Journal Proteome Research. 16 (4), 1506-1514 (2017).
  24. Hogrebe, A., et al. Benchmarking common quantification strategies for large-scale phosphoproteomics. Nature Communications. 9 (1), 1045 (2018).
  25. Wong, M. M., et al. Phosphoproteomics of Arabidopsis Highly ABA-Induced1 identifies AT-Hook-Like10 phosphorylation required for stress growth regulation. Proceedings of the National Academy of Sciences of the United States of America. 116 (6), 2354-2363 (2019).
  26. Yang, F., Melo-Braga, M. N., Larsen, M. R., Jorgensen, H. J., Battle Palmisano, G. through signaling between wheat and the fungal pathogen Septoria tritici revealed by proteomics and phosphoproteomics. Molecular & Cell Proteomics. 12 (9), 2497-2508 (2013).
  27. Tsai, C. F., et al. Tandem Mass Tag labeling facilitates reversed-phase liquid chromatography-mass spectrometry analysis of hydrophilic phosphopeptides. Analytical Chemistry. 91 (18), 11606-11613 (2019).
check_url/61489?article_type=t

Play Video

Cite This Article
Hsu, C., Tsai, C., Tao, W. A., Wang, P. Phosphoproteomic Strategy for Profiling Osmotic Stress Signaling in Arabidopsis. J. Vis. Exp. (160), e61489, doi:10.3791/61489 (2020).

View Video