Summary

从人内脏脂肪组织中分离出活的脂肪细胞和基质血管组分,适用于 RNA 分析和巨噬细胞表型分析

Published: October 27, 2020
doi:

Summary

该方案提供了一种高效的胶原酶消化方法,用于在单个过程中从人内脏脂肪中分离活脂肪细胞和基质血管部分-SVF细胞,包括从脂肪细胞中获得高质量RNA的方法,以及通过对多种膜结合标记物进行染色以通过流式细胞术分析的SVF-巨噬细胞表型。

Abstract

内脏脂肪组织(VAT)是一种活跃的代谢器官,主要由成熟的脂肪细胞和基质血管部分(SVF)细胞组成,它们释放不同的生物活性分子,控制代谢、激素和免疫过程;目前,尚不清楚这些过程如何在脂肪组织内调节。因此,开发评估每个细胞群对脂肪组织病理生理学贡献的方法至关重要。该方案描述了分离步骤,并提供了必要的故障排除指南,以便使用胶原酶酶消化技术在单个过程中从人VAT活检中有效分离活的成熟脂肪细胞和SVF。此外,该方案还经过优化,可识别巨噬细胞亚群并进行成熟的脂肪细胞RNA分离,用于基因表达研究,从而可以进行剖析这些细胞群之间相互作用的研究。简而言之,将 VAT 活检洗涤、机械切碎并消化以产生单细胞悬浮液。离心后,通过浮选从SVF沉淀中分离成熟的脂肪细胞。RNA 提取方案可确保从脂肪细胞中获得高产量的总 RNA(包括 miRNA),用于下游表达测定。同时,SVF细胞用于通过流式细胞术分析表征巨噬细胞亚群(促炎和抗炎表型)。

Introduction

白色脂肪组织不仅由脂肪细胞或脂肪细胞组成,还由称为基质血管部分 (SVF) 的非脂肪细胞组组成,它包含由巨噬细胞、其他免疫细胞(如调节性 T 细胞 (Tregs) 和嗜酸性粒细胞、前脂肪细胞和成纤维细胞组成的异质细胞群,周围环绕着血管和结缔组织 1,2.脂肪组织 (AT) 现在被认为是一种器官,它通过不同细胞产生并释放到组织中的脂肪因子、细胞因子和 microRNA 来调节与代谢和炎症相关的生理过程,具有自分泌、旁分泌和内分泌作用 3,4。在人类中,白色脂肪组织包括皮下脂肪组织 (SAT) 和内脏脂肪组织 (VAT),它们之间具有重要的解剖学、分子、细胞和生理学差异 2,5。SAT 占人类 AT 的 80%,而 VAT 位于腹腔内,主要在肠系膜和网膜中,代谢更活跃6。此外,VAT是一种内分泌器官,分泌介质对体重、胰岛素敏感性、脂质代谢和炎症有重大影响。因此,增值税累积会导致腹部肥胖和肥胖相关疾病,如 2 型糖尿病、代谢综合征、高血压和心血管疾病风险,是肥胖相关死亡率的更好预测指标 6,7,8,9。

在稳态条件下,脂肪细胞、巨噬细胞和其他免疫细胞通过分泌抗炎介质来合作维持VAT代谢10。然而,过度的VAT膨胀会促进活化的T细胞、NK细胞和巨噬细胞的募集。事实上,在瘦增值税中,巨噬细胞的比例为 5%,而在肥胖症中,该比例上升到 50%,巨噬细胞从抗炎表型到促炎表型的两极分化,产生慢性炎症环境10,11

由于肥胖大流行,出现了数量惊人的报告,涉及不同的增值税研究主题,包括脂肪细胞生物学、表观遗传学、炎症、内分泌特性和作为细胞外囊泡的新兴领域等 8,10,12,13。然而,尽管VAT环境是由脂肪细胞与常驻或到达的巨噬细胞之间的串扰来定义的,但大多数研究只关注一个细胞群,并且关于这些细胞在VAT中的相互作用及其病理生理学后果的信息很少11,14。此外,针对AT中脂肪细胞-巨噬细胞相互作用的有价值的研究是使用缺乏体内启动条件的细胞系进行的11,14,15。剖析这些细胞在VAT中的相互作用或特定贡献的合适策略需要从同一脂肪活检中分离出两种细胞类型,以进行体测定,以尽可能相似地反映调节VAT代谢的体内特性。

尽管基于机械力的非酶解离方法可确保最小的操作,但如果目的是研究 SVF 细胞,则不能使用这些方法,因为与酶法相比,它们的细胞回收效率较低,细胞活力较低,并且需要更大的组织体积16,17.使用胶原酶进行酶促消化是一种温和的方法,可以充分消化纤维组织(如 WAT18)的胶原蛋白和细胞外基质蛋白,并且经常在胰蛋白酶无效或有害时使用19。该方案提供了基本的故障排除指南,使用胶原酶消化技术,在单个过程中从人VAT活检中有效分离活的成熟脂肪细胞和SVF细胞,提供信息以确保来自成熟脂肪细胞(包括microRNA)的总RNA的高产量(数量、纯度和完整性),用于下游表达应用。同时,该方案经过优化,可通过对多个膜结合标记物进行染色来鉴定 SVF 细胞中的巨噬细胞亚群,以便通过流式细胞术20 进行进一步分析。

Protocol

该协议已获得 Instituto Nacional de Perinatologia (212250-3210-21002-06-15) 的 IRB 批准。参与是自愿的,所有登记的妇女都签署了知情同意书。 1.内脏脂肪组织收集 在剖宫产期间通过部分网膜切除术对足月无产单胎妊娠的健康成年女性进行增值税活检。 子宫闭合和止血后,继续确定更大的网膜并将其在湿敷上伸展。暴露的 AT 是增值税。 找到最大的血管,并沿着?…

Representative Results

该方案描述了一种酶促方法,使用胶原酶消化,然后进行差异离心,以在单个过程中从部分网膜切除术后从健康孕妇获得的VAT活检中分离出活的成熟脂肪细胞和SVF细胞。在这种情况下,我们使用脂肪细胞进行RNA提取,使用SVF进行巨噬细胞表型分析。 RNA提取方案能够从成熟脂肪细胞中获得具有足够纯度、高完整性的RNA和microRNA(图1)。通过RNA质量控制分?…

Discussion

VAT在代谢调节和炎症中起着至关重要的作用。人们对脂肪细胞和免疫细胞在与肥胖相关的慢性炎症中的作用越来越感兴趣,这导致了不同技术的发展,以分离 AT 中存在的 SVF 和脂肪细胞。然而,大多数技术不允许在一次手术中从相同的 VAT 活检中获得可用于下游应用的这两组不同的细胞,这对于脂肪细胞和 SVF 细胞之间相互作用的研究可能至关重要。因此,我们实施了该协议,该协议提供了详细的…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项研究得到了 Instituto Nacional de Perinatologia(批准号:3300-11402-01-575-17 和 212250-3210-21002-06-15)和 CONACyT,Fondo Sectorial de Investigacion en Salud y Seguridad Social (FOSISS)(批准号:2015-3-2-61661)。

Materials

0.2 mL PCR tubes Axygen PCR-02-C RNase, DNase free and nonpyrogenic
1.5 mL microcentrifuge tubes Axygen MCT-150-C RNase, DNase free and nonpyrogenic
10 mL serological pipettes Corning CLS4101-50EA Individually plastic wrapped
10 µL universal pipet tip Axygen T-300-L-R RNase, DNase free and nonpyrogenic
10 µL universal pipet tip Axygen T-300-R-S RNase, DNase free and nonpyrogenic
1000 µL universal pipet tip Axygen T-1000-B-R RNase, DNase free and nonpyrogenic
2.0 mL microcentrifuge tube Axygen MCT-200-C RNase, DNase free and nonpyrogenic
200 µL universal pipet tip Axygen T-200-Y-R RNase, DNase free and nonpyrogenic
2100 Bioanalyzer Instrument Agilent G2939BA
2101 Bioanalyzer PC Agilent G2953CA 2100 Expert Software pre-installed in PC
5 ml Round Bottom Polystyrene Test Tube Corning 352003  Snap cap, sterile
50 mL centrifuge tubes Corning CLS430828-100EA Polipropilene, conical bottom and sterile
Acid-guanidinium-phenol based reagent Zymo Research R2050-1-200 TRI Reagent or similar
Agilent RNA 6000 Nano Kit Agilent 5067-1511
Agilent Small RNA Kit Agilent 5067-1548
APC/Cy7 anti-human CD14 Antibody BioLegend 325620 0.4 mg/106 cells, present on monocytes/macrophages, clone HCD14
Baker 250 ml, non sterile
Bovine serum albumin Sigma-Aldrich A3912-100G Heat shock fraction, pH 5.2, ≥96%
Chip priming station Agilent 5065-9951
Collagenase type II Gibco 17101-015 Powder
D-(+)-Glucose Sigma-Aldrich G8270-100G Powder
Direct-zol RNA Miniprep Zymo Research R2051 Supplied with 50 mL TRI reagen
Dissecting forceps Steel, serrated jaws and round ends
Dissection tray Stainless steel
Ethyl alcohol Sigma-Aldrich E7023-500ML 200 proof, for molecular biology
FACS Flow Sheath Fluid BD Biosciences 342003
FACS Lysing Solution BD Biosciences 349202
FACSAria III Flow Cytometer/Cell Sorter BD Biosciences 648282
FASCDiva Software BD Biosciences 642868 Software v6.0 pre-installed
Hemacytometer Sigma Z359629-1EA
Manual cell counter
Mayo dissecting scisors Stainless steel
Microcentrifuge Adjustable temperature
Nanodrop spectrophotometer Thermo Scientific ND2000LAPTOP
Orbital shaker Adjustable temperature and speed
P10 variable volume micropipette  Thermo Scientific-Finnpipette 4642040 1 to 10 μL
P1000 variable volume micropipette  Thermo Scientific-Finnpipette 4642090 100 to 1000 μL
P2 variable volume micropipette  Thermo Scientific-Finnpipette 4642010 0.2 to 2 μL
P200 variable volume micropipette  Thermo Scientific-Finnpipette 4642080 20 to 200 μL
PCR tube storage rack Axygen R96PCRFSP
PE/Cy5 anti-human HLA-DR Antibody BioLegend 307608 0.0625 mg/106 cells, present on macrophages, clone L243
PE/Cy7 anti-human CD45 Antibody BioLegend 304016 0.1 mg/106 cells, present on leukocytes, clone H130
Phosphate buffered saline Sigma-Aldrich P3813-10PAK Powder, pH 7.4, for preparing 1 L solutions
Pipette controller
Red Blood Cells Lysis Buffer Roche 11 814 389 001 For preferential lysis of red blood cells from human whole blood
Refrigerated centrifuge Whit adapter for 50 mL conical tubes
Sterile Specimen container
Transfer pipette Thermo Scientific-Samco 204-1S Sterile
Trypan Blue Gibco 15250-061 0.4% Solution
Tube racks For different tube sizes
Vortex Mini Shaker Cientifica SENNA BV101

References

  1. Han, S., Sun, H. M., Hwang, K. C., Kim, S. W. Adipose-derived stromal vascular fraction cells: update on clinical utility and efficacy. Critical Reviews in Eukaryotic Gene Expression. 25 (2), 145-152 (2015).
  2. Ibrahim, M. M. Subcutaneous and visceral adipose tissue: structural and functional differences. Obesity Reviews. 11 (1), 11-18 (2010).
  3. Barchetta, I., Cimini, F. A., Ciccarelli, G., Baroni, M. G., Cavallo, M. G. Sick fat: the good and the bad of old and new circulating markers of adipose tissue inflammation. Journal of Endocrinological Investigation. 42 (11), 1257-1272 (2019).
  4. Scheja, L., Heeren, J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nature Reviews Endocrinology. 15 (9), 507-524 (2019).
  5. Ronquillo, M. D., et al. Different gene expression profiles in subcutaneous and visceral adipose tissues from Mexican patients with obesity. Indian Journal of Medical Research. 149 (5), 616-626 (2019).
  6. Mittal, B. Subcutaneous adipose tissue and visceral adipose tissue. Indian Journal of Medical Research. 149 (5), 571-573 (2019).
  7. West-Eberhard, M. J. Nutrition, the visceral immune system, and the evolutionary origins of pathogenic obesity. Proceedings of the National Academy of Sciences of the United States of America. 116 (3), 723-731 (2019).
  8. Kaminski, D. A., Randall, T. D. Adaptive immunity and adipose tissue biology. Trends in Immunology. 31 (10), 384-390 (2010).
  9. Elffers, T. W., et al. Body fat distribution, in particular visceral fat, is associated with cardiometabolic risk factors in obese women. PLoS One. 12 (9), 0185403 (2017).
  10. Macdougall, C. E., et al. Visceral adipose tissue immune homeostasis is regulated by the crosstalk between adipocytes and dendritic cell subsets. Cell Metabolism. 27 (3), 588-601 (2018).
  11. Sarvari, A. K., et al. Interaction of differentiated human adipocytes with macrophages leads to trogocytosis and selective IL-6 secretion. Cell Death & Disease. 6 (1), 1613 (2015).
  12. Gao, X., Salomon, C., Freeman, D. J. Extracellular vesicles from adipose tissue-A potential role in obesity and type 2 diabetes. Frontiers in Endocrinology. 8 (1), 202 (2017).
  13. Crujeiras, A. B., et al. Genome-wide DNA methylation pattern in visceral adipose tissue differentiates insulin-resistant from insulin-sensitive obese subjects. Translational Research. 178 (1), 13-24 (2016).
  14. Surmi, B. K., Hasty, A. H. Macrophage infiltration into adipose tissue: initiation, propagation and remodeling. Future Lipidology. 3 (5), 545-556 (2008).
  15. Suganami, T., Nishida, J., Ogawa, Y. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arteriosclerosis, Thrombosis, and Vascular Biology. 25 (10), 2062-2068 (2005).
  16. Bellei, B., Migliano, E., Tedesco, M., Caputo, S., Picardo, M. Maximizing non-enzymatic methods for harvesting adipose-derived stem from lipoaspirate: technical considerations and clinical implications for regenerative surgery. Scientific Reports. 7 (1), 10015 (2017).
  17. Senesi, L., et al. Mechanical and enzymatic procedures to isolate the stromal vascular fraction from adipose tissue: preliminary results. Frontiers in Cell and Developmental Biology. 7 (1), 88 (2019).
  18. Seaman, S. A., Tannan, S. C., Cao, Y., Peirce, S. M., Lin, K. Y. Differential effects of processing time and duration of collagenase digestion on human and murine fat grafts. Plastic and Reconstructive Surgery. 136 (2), 189-199 (2015).
  19. Duarte, A. S., Correia, A., Esteves, A. C. Bacterial collagenases – A review. Critical Reviews in Microbiology. 42 (1), 106-126 (2016).
  20. Bravo-Flores, E., et al. Macrophage populations in visceral adipose tissue from pregnant women: potential role of obesity in maternal inflammation. International Journal of Molecular Sciences. 19 (4), 1074 (2018).
  21. Conde-Green, A., et al. Shift toward mechanical isolation of adipose-derived stromal vascular fraction: review of upcoming techniques. Plastic and Reconstructive Surgery – Global Open. 4 (9), 1017 (2016).
  22. Oberbauer, E., et al. Enzymatic and non-enzymatic isolation systems for adipose tissue-derived cells: current state of the art. Cell Regeneration. 4 (7), 1-14 (2015).
  23. van Dongen, J. A., et al. Comparison of intraoperative procedures for isolation of clinical grade stromal vascular fraction for regenerative purposes: a systematic review. Journal of Tissue Engineering and Regenerative Medicine. 12 (1), 261-274 (2018).
  24. Winnier, G. E., et al. Isolation of adipose tissue derived regenerative cells from human subcutaneous tissue with or without the use of an enzymatic reagent. PLoS One. 14 (9), 0221457 (2019).
  25. Gentile, P., Piccinno, M. S., Calabrese, C. Characteristics and potentiality of human adipose-derived stem cells (hASCs) obtained from enzymatic digestion of fat graft. Cells. 8 (3), 282 (2019).
  26. Hagman, D. K., et al. Characterizing and quantifying leukocyte populations in human adipose tissue: impact of enzymatic tissue processing. Journal of Immunological Methods. 386 (1-2), 50-59 (2012).
  27. Lockhart, R., Hakakian, C., Aronowitz, J. Tissue dissociation enzymes for adipose stromal vascular fraction cell isolation: a review. Journal of Stem Cell Research & Therapy. 5 (12), 1000321 (2015).
  28. Condé-Green, A., et al. Comparison between stromal vascular cells’ isolation with enzymatic digestion and mechanical processing of aspirated adipose tissue. Plastic and Reconstructive Surgery. 134 (4), 54 (2014).
  29. Markarian, C. F., et al. Isolation of adipose-derived stem cells: a comparison among different methods. Biotechnology Letters. 36 (4), 693-702 (2014).
  30. Aguena, M., et al. Optimization of parameters for a more efficient use of adipose-derived stem cells in regenerative medicine therapies. Stem cells international. 2012 (1), 303610 (2012).
  31. Yang, X. F., et al. High efficient isolation and systematic identification of human adipose-derived mesenchymal stem cells. Journal of Biomedical Science. 18 (1), 59 (2011).
  32. Conde-Green, A., et al. Effects of centrifugation on cell composition and viability of aspirated adipose tissue processed for transplantation. Aesthetic Surgery Journal. 30 (2), 249-255 (2010).
  33. Hoareau, L., et al. Effect of centrifugation and washing on adipose graft viability: a new method to improve graft efficiency. Journal of Plastic, Reconstructive & Aesthetic Surgery. 66 (5), 712-719 (2013).
  34. Xie, Y., et al. The effect of centrifugation on viability of fat grafts: an evaluation with the glucose transport test. Journal of Plastic, Reconstructive & Aesthetic Surgery. 63 (3), 482-487 (2010).
  35. Bourin, P., et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 15 (6), 641-648 (2013).
  36. Kanneganti, T. D., Dixit, V. D. Immunological complications of obesity. Nature Immunology. 13 (8), 707-712 (2012).
  37. Lee, M. J., Wu, Y., Fried, S. K. Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Molecular Aspects of Medicine. 34 (1), 1-11 (2013).
  38. Raajendiran, A., Tsiloulis, T., Watt, M. J. Adipose tissue development and the molecular regulation of lipid metabolism. Essays in Biochemistry. 60 (5), 437-450 (2016).
  39. Rostam, H. M., et al. The impact of surface chemistry modification on macrophage polarisation. Immunobiology. 221 (11), 1237-1246 (2016).
  40. Chamberlain, L. M., Holt-Casper, D., Gonzalez-Juarrero, M., Grainger, D. W. Extended culture of macrophages from different sources and maturation results in a common M2 phenotype. Journal of Biomedical Materials Research Part A. 103 (9), 2864-2874 (2015).
  41. Williams, M. R., Cauvi, D. M., Rivera, I., Hawisher, D., De Maio, A. Changes in macrophage function modulated by the lipid environment. Innate Immunity. 22 (3), 141-151 (2016).
  42. Baer, P. C., Geiger, H. Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells International. 2012 (1), 812693 (2012).
  43. Bajek, A., et al. Does the liposuction method influence the phenotypic characteristic of human adipose-derived stem cells. Bioscience Reports. 35 (3), 00212 (2015).
  44. van Harmelen, V., et al. Effect of BMI and age on adipose tissue cellularity and differentiation capacity in women. International Journal of Obesity and Related Metabolic Disorders. 27 (8), 889-895 (2003).
  45. Hemmrich, K., Denecke, B., Paul, N. E., Hoffmeister, D., Pallua, N. RNA isolation from adipose tissue: an optimized procedure for high RNA yield and integrity. Laboratory Medicine. 41 (2), 104-106 (2010).
  46. Mendez, V., et al. A rapid protocol for purification of total RNA for tissues collected from pigs at a slaughterhouse. Genetics and Molecular Research. 10 (4), 3251-3255 (2011).
  47. Pena, R. N., Canovas, A., Estany, J. Technical note: Efficient protocol for isolation of total ribonucleic acid from lyophilized fat and muscle pig samples. Journal of Animal Science. 88 (2), 442-445 (2010).
  48. Pratt, S. L., Burns, T. A., Owens, M. D., Duckett, S. K. Isolation of total RNA and detection procedures for miRNA present in bovine-cultured adipocytes and adipose tissues. Methods in Molecular Biology. 936 (1), 181-194 (2013).
  49. Cirera, S. Highly efficient method for isolation of total RNA from adipose tissue. BMC Research Notes. 6 (1), 472 (2013).
  50. Rio, D. C., Ares, M., Hannon, G. J., Nilsen, T. W. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harbor Protocols. 2010 (6), (2010).
  51. Cho, K. W., Morris, D. L., Lumeng, C. N. Flow cytometry analyses of adipose tissue macrophages. Methods in Enzymology. 537 (1), 297-314 (2014).
  52. Berry, R., Rodeheffer, M. S. Characterization of the adipocyte cellular lineage in vivo. Nature Cell Biology. 15 (3), 302-308 (2013).
  53. Jang, Y., et al. Characterization of adipose tissue-derived stromal vascular fraction for clinical application to cartilage regeneration. In Vitro Cellular & Developmental Biology – Animal. 51 (2), 142-150 (2015).
  54. Nicoletti, G. F., De Francesco, F., D’Andrea, F., Ferraro, G. A. Methods and procedures in adipose stem cells: state of the art and perspective for translation medicine. Journal of Cellular Physiology. 230 (3), 489-495 (2015).
  55. Palumbo, P., et al. Methods of isolation, characterization and expansion of human adipose-derived stem cells (ASCs): an overview. International Journal of Molecular Sciences. 19 (7), 1897 (2018).
  56. Raposio, E., Bertozzi, N. How to isolate a ready-to-use adipose-derived stem cells pellet for clinical application. European Review for Medical and Pharmacological Sciences. 21 (18), 4252-4260 (2017).
  57. Silva, K. R., et al. Characterization of stromal vascular fraction and adipose stem cells from subcutaneous, preperitoneal and visceral morbidly obese human adipose tissue depots. PLoS One. 12 (3), 0174115 (2017).
  58. Wankhade, U. D., Shen, M., Kolhe, R., Fulzele, S. Advances in adipose-derived stem cells isolation, characterization, and application in regenerative tissue engineering. Stem Cells International. 2016 (1), 3206807 (2016).
  59. Zavan, B., et al. Persistence of CD34 stem marker in human lipoma: searching for cancer stem cells. International Journal of Biological Sciences. 11 (10), 1127-1139 (2015).
  60. Dey, A., Allen, J., Hankey-Giblin, P. A. Ontogeny and polarization of macrophages in inflammation: blood monocytes versus tissue macrophages. Frontiers in Immunology. 5 (1), 683 (2014).
  61. Liddiard, K., Taylor, P. R. Understanding local macrophage phenotypes in disease: shape-shifting macrophages. Nature Medicine. 21 (2), 119-120 (2015).
  62. Prieur, X., et al. Differential lipid partitioning between adipocytes and tissue macrophages modulates macrophage lipotoxicity and M2/M1 polarization in obese mice. Diabetes. 60 (3), 797-809 (2011).
  63. Wang, H., et al. CD68(+)HLA-DR(+) M1-like macrophages promote motility of HCC cells via NF-kappaB/FAK pathway. Cancer Letters. 345 (1), 91-99 (2014).
  64. Yamamoto, Y., et al. Decreased human leukocyte antigen-DR expression in the lipid raft by peritoneal macrophages from women with endometriosis. Fertility and Sterility. 89 (1), 52-59 (2008).
  65. Italiani, P., Boraschi, D. From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Frontiers in Immunology. 5 (1), 514 (2014).
  66. Perdiguero, E. G., Geissmann, F. The development and maintenance of resident macrophages. Nature Immunology. 17 (1), 2-8 (2016).
check_url/61884?article_type=t

Play Video

Cite This Article
Estrada-Gutierrez, G., Bravo-Flores, E., Ortega-Castillo, V., Flores-Rueda, V., Mancilla-Herrera, I., Espino Y Sosa, S., Sánchez-Martínez, M., Perichart-Perera, O., Solis-Paredes, M. Isolation of Viable Adipocytes and Stromal Vascular Fraction from Human Visceral Adipose Tissue Suitable for RNA Analysis and Macrophage Phenotyping. J. Vis. Exp. (164), e61884, doi:10.3791/61884 (2020).

View Video