Summary

通过压力-体积环路分析确定心脏对β肾上腺素能刺激的反应

Published: May 19, 2021
doi:

Summary

在这里,我们描述了在增加静脉输注的异丙肾上腺素剂量下的心脏压力 – 体积环路分析,以确定小鼠的内在心脏功能和β肾上腺素能储备。我们使用改进的开胸方法进行压力 – 体积回路测量,其中我们包括具有正呼气末压的通气。

Abstract

心脏功能的测定是心血管疾病动物模型中可靠的终点分析,以表征特定治疗对心脏的影响。由于遗传操作的可行性,小鼠已成为研究心脏功能和寻找新的潜在治疗靶点的最常见哺乳动物动物模型。在这里,我们描述了一种方案,用于在基础条件下使用压力 – 体积环测量和分析来确定体内心脏功能,并通过静脉输注增加浓度的异丙肾上腺素的β肾上腺素能刺激。我们提供完善的治疗方案,包括考虑到正呼气末压力的通气支持,以改善胸腔开胸测量期间的负面影响,以及强效镇痛(丁丙诺啡),以避免手术过程中疼痛引起的无法控制的心肌压力。总而言之,对程序的详细说明和对可能陷阱的讨论使高度标准化和可重复的压力 – 体积循环分析成为可能,通过防止可能的方法学偏倚来减少动物被排除在实验队列之外。

Introduction

心血管疾病通常影响心脏功能。本期指出了动物疾病模型中评估体内详细心脏功能的重要性。动物实验被三个Rs(3R)指导原则(减少/改进/替换)的框架所包围。在当前发育水平上理解涉及全身反应(即心血管疾病)的复杂病理的情况下,主要选择是改进可用的方法。由于变异性较小,精炼还会导致所需动物数量的减少,从而提高分析和结论的力量。此外,心脏收缩力测量与心脏病的动物模型相结合,包括由神经体液刺激或主动脉带等压力过载引起的模型,其模拟例如改变的儿茶酚胺/β肾上腺素能水平1,2,3,4,为临床前研究提供了一种强有力的方法。考虑到基于导管的方法仍然是深入评估心脏收缩力5的最广泛使用的方法,我们旨在根据先前的经验(包括对该方法的具体参数的评估)在β肾上腺素能刺激期间通过压力 – 体积环(PVL)测量来精确测量小鼠体内心脏功能6, 7.

为了确定心脏血流动力学参数,可以使用包括成像或基于导管的技术的方法。这两种选择都伴随着优点和缺点,需要为各自的科学问题仔细考虑。成像方法包括超声心动图和磁共振成像(MRI);两者都已成功用于小鼠。超声心动图测量涉及小鼠高心率所需的高速探头的高初始成本;这是一种相对简单的非侵入性方法,但在理想情况下应该具有识别和可视化心脏结构经验的操作员中,它是可变的。此外,不能直接进行压力测量,并且通过尺寸大小和流量测量的组合获得计算。另一方面,它的优点是可以对同一动物进行多次测量,并且可以监测心脏功能,例如在疾病进展期间。关于体积测量,MRI是金标准程序,但与超声心动图类似,无法进行直接压力测量,只能获得预载荷相关参数8。限制因素还包括可用性、分析工作量和运营成本。在这里,基于导管的测量心脏功能的方法是一个很好的替代方案,它还可以直接监测心内压力和确定与负荷无关的收缩性参数,如预负荷可招募卒中(PRSW)9。然而,通过压力 – 电导管(通过电导率测定)测量的心室体积小于MRI测量的心室体积,但组差异保持在相同的范围内10。为了确定可靠的体积值,需要进行相应的校准,这是PVL测量过程中的关键步骤。它将体积校准比色皿中血液电导率的离体测量(电导率到体积的转换)与体内分析相结合,以在推注高渗盐水11,12期间心肌平行电导。除此之外,导管在心室内的位置以及电极沿心室纵轴的正确方向对于检测它们产生的周围电场的能力至关重要。仍然随着小鼠心脏尺寸的减小,可以避免由导管脑室内方向变化产生的伪影,即使在扩张的心室5,10中,但伪影可以在β肾上腺素能刺激下进化6,13。除了电导方法之外,基于导纳的方法的发展似乎避免了校准步骤,但这里的体积值被高估了14,15。

由于小鼠是心血管研究中最重要的临床前模型之一,并且心脏的β肾上腺素能储备是心脏生理学和病理学的核心兴趣,我们在这里提出了一个改进的方案,通过PVL测量在β肾上腺素能刺激期间通过PVL测量来确定小鼠体内的心脏功能。

Protocol

所有动物实验均根据卡尔斯鲁厄地区委员会和海德堡大学的规定(AZ 35-9185.82/A-2/15,AZ 35-9185.82/A-18/15,AZ 35-9185.81/G131/15,AZ 35-9185.81/G121/17)的规定批准和进行,符合欧洲议会关于保护用于科学目的的动物的指令2010/63/ EU的指南。该协议中显示的数据来自野生型C57Bl6 / N雄性小鼠(17±1.4周龄)。在海德堡医学院的动物设施(IBF)中,小鼠在指定的无病原体条件下维持。将小鼠置于12小时的光暗循环中?…

Representative Results

压力体积环(PVL)测量是分析药物心脏药效学和研究正常和病理条件下转基因小鼠模型心脏表型的强大工具。该协议允许评估成年小鼠模型中的心脏β肾上腺素能储备。在这里,我们描述了异氟醚麻醉联合丁丙诺啡(镇痛药)和泛库溴铵(肌肉松弛剂)下的开胸方法,其重点是通过股静脉导管输注异丙肾上腺素浓度来对β肾上腺素能刺激的心脏反应。该方案中显示的一些代表性数据来自野生型C57Bl6…

Discussion

在这里,我们提供了一种方案来分析在增加β肾上腺素能刺激下的小鼠体内心脏功能。该程序可用于解决转基因小鼠或干预中心脏功能的基线参数和肾上腺素能储备(例如,正性肌力和变时性)。与其他确定心脏功能的方法相比,压力 – 体积环(PVL)测量最突出的优势是分析内在的,与负荷无关的心脏功能。所有其他方法(例如,MRI 和超声心动图)只能评估心脏功能的负荷依赖性参数,尤其是无?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢Manuela Ritzal,Hans-Peter Gensheimer,Christin Richter和海德堡大学Interfakultäre Biomedizinische Forschungseinrichtung(IBF)的团队提供专家技术援助。

这项工作得到了DZHK(德国心血管研究中心),BMBF(德国教育和研究部),巴登 – 符腾堡州联邦国家创新基金会和Deutsche Forschungsgemeinschaft(DFG,德国研究基金会)项目ID 239283807 – TRR 152,FOR 2289和协作研究中心(SFB)1118的支持。

Materials

1.4F SPR-839 catheter Millar Instruments, USA 840-8111
1 ml syringes Beckton Dickinson, USA REF303172
Bio Amplifier ADInstruments, USA FE231
Bridge-Amplifier ADInstruments, USA FE221
Bovine Serum Albumin Roth, Germany 8076.2
Buprenorphine hydrochloride Bayer, Germany 4007221026402
Calibration cuvette Millar, USA 910-1049
Differential pressure transducer MPX Hugo Sachs Elektronik- Harvard Apparatus, Germany Type 39912
Dumont Forceps #5/45 Fine Science tools Inc. 11251-35
Dumont Forceps #7B Fine Science tools Inc. 11270-20
Graefe Forceps Fine Science tools Inc. 11051-10
GraphPad Prism GraphPad Software Ver. 8.3.0
EcoLab-PE-Micotube Smiths, USA 004/310/168-1
Etomidate Lipuro Braun, Germany 2064006
Excel Microsoft
Heparin Ratiopharm, Germany R26881
Hot plate and control unit Labotec, Germany Hot Plate 062
Isofluran Baxter, Germany HDG9623
Isofluran Vaporizer Abbot Vapor 19.3
Isoprenalinhydrochloride Sigma-Aldrich, USA I5627
Fine Bore Polythene tubing 0.61 mm OD, 0.28 mm ID Smiths Medical International Ltd, UK Ref. 800/100/100
MiniVent ventilator for mice Hugo Sachs Elektronik- Harvard Apparatus, Germany Type 845
MPVS Ultra PVL System Millar Instruments, USA
NaCl AppliChem, Germany A3597
NaCl 0.9% isotonic Braun, Germany 2350748
Pancuronium-bromide Sigma-Aldrich, USA BCBQ8230V
Perfusor 11 Plus Harvard Apparatus Nr. 70-2209
Powerlab 4/35 control unit ADInstruments, USA PL3504
Rechargeable cautery-Set Faromed, Germany 09-605
Scissors Fine Science tools Inc. 140094-11
Software LabChart 7 Pro ADInstruments, USA LabChart 7.3 Pro
Standard mouse food LASvendi GmbH, Germany Rod18
Stereo microscope Zeiss, Germany Stemi 508
Surgical suture 8/0 Suprama, Germany Ch.B.03120X
Venipuncture-cannula Venflon Pro Safty 20-gauge Beckton Dickinson, USA 393224
Vessel Cannulation Forceps Fine Science tools Inc. 00574-11
Water bath Thermo Fisher Scientific, USA
Syringe filter (Filtropur S 0.45) Sarstedt, Germany Ref. 83.1826

References

  1. Bacmeister, L., et al. Inflammation and fibrosis in murine models of heart failure. Basic Research in Cardiology. 114 (3), 19 (2019).
  2. Hartupee, J., Mann, D. L. Neurohormonal activation in heart failure with reduced ejection fraction. Nature Reviews Cardiology. 14 (1), 30-38 (2017).
  3. Hasenfuss, G. Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovascular Research. 39 (1), 60-76 (1998).
  4. Lefkowitz, R. J., Rockman, H. A., Koch, W. J. Catecholamines, cardiac beta-adrenergic receptors, and heart failure. Circulation. 101 (14), 1634-1637 (2000).
  5. Cingolani, O. H. K. Pressure-volume relation analysis of mouse ventricular function. The American Journal of Physiology-Heart and Circulatory Physiology. 301, 2198-2206 (2011).
  6. Bacmeister, L., et al. Assessment of PEEP-Ventilation and the Time Point of Parallel-Conductance Determination for Pressure-Volume Analysis Under beta-Adrenergic Stimulation in Mice. Frontiers in Cardiovascular Medicine. 6, 36 (2019).
  7. Segin, S., et al. Cardiomyocyte-Specific Deletion of Orai1 Reveals Its Protective Role in Angiotensin-II-Induced Pathological Cardiac Remodeling. Cells. 9 (5), (2020).
  8. Clark, J. E., Marber, M. S. Advancements in pressure-volume catheter technology – stress remodelling after infarction. Experimental Physiology. 98 (3), 614-621 (2013).
  9. Glower, D. D., et al. Linearity of the Frank-Starling relationship in the intact heart: the concept of preload recruitable stroke work. Circulation. 71 (5), 994-1009 (1985).
  10. Winter, E. M., et al. Left ventricular function in the post-infarct failing mouse heart by magnetic resonance imaging and conductance catheter: a comparative analysis. Acta Physiologica. 194 (2), 111-122 (2008).
  11. Krenz, M. Conductance, admittance, and hypertonic saline: should we take ventricular volume measurements with a grain of salt. Journal of Applied Physiology. 107 (6), 1683-1684 (2009).
  12. Pacher, P., Nagayama, T., Mukhopadhyay, P., Batkai, S., Kass, D. A. Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats. Nature Protocols. 3 (9), 1422-1434 (2008).
  13. Wei, A. E., Maslov, M. Y., Pezone, M. J., Edelman, E. R., Lovich, M. A. Use of pressure-volume conductance catheters in real-time cardiovascular experimentation. Heart, Lung and Circulation. 23 (11), 1059-1069 (2014).
  14. van Hout, G. P., et al. Admittance-based Pressure-Volume Loops versus gold standard cardiac magnetic resonance imaging in a porcine model of myocardial infarction. Physiological Reports. 2 (4), 00287 (2014).
  15. Wei, C. L., Shih, M. H. Calibration Capacity of the Conductance-to-Volume Conversion Equations for the Mouse Conductance Catheter Measurement System. IEEE Transactions on Biomedical Engineering. 56 (6), 1627-1634 (2009).
  16. Das, S., MacDonald, K., Chang, H. Y., Mitzner, W. A simple method of mouse lung intubation. Journal of Visualized Experiments. (73), e50318 (2013).
  17. Faul, F., Erdfelder, E., Lang, A. G., Buchner, A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods. 39 (2), 175-191 (2007).
  18. Weiss, J. L., Frederiksen, J. W., Weisfeldt, M. L. Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. Journal of Clinical Investigation. 58 (3), 751-760 (1976).
  19. Faul, F., Erdfelder, E., Lang, A. G., Buchner, A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavioral Research Methods. 39 (2), 175-191 (2007).
  20. Jacoby, C., et al. Direct comparison of magnetic resonance imaging and conductance microcatheter in the evaluation of left ventricular function in mice. Basic Research in Cardiology. 101 (1), 87-95 (2006).
  21. Georgakopoulos, D., Kass, D. A. Estimation of parallel conductance by dual-frequency conductance catheter in mice. The American Journal of Physiology-Heart and Circulatory Physiology. 279 (1), 443-450 (2000).
  22. Calligaris, S. D., Ricca, M., Conget, P. Cardiac stress test induced by dobutamine and monitored by cardiac catheterization in mice. Journal of Visualized Experiments. (72), e50050 (2013).
  23. Abraham, D., Mao, L. Cardiac Pressure-Volume Loop Analysis Using Conductance Catheters in Mice. Journal of Visualized Experiments. (103), e52942 (2015).
  24. Pearce, J. A., Porterfield, J. E., Larson, E. R., Valvano, J. W., Feldman, M. D. Accuracy considerations in catheter based estimation of left ventricular volume. Conference proceedings – IEEE engineering in medicine and biology society. 2010, 3556-3558 (2010).
  25. Nielsen, J. M., et al. Left ventricular volume measurement in mice by conductance catheter: evaluation and optimization of calibration. The American Journal of Physiology-Heart and Circulatory Physiology. 293 (1), 534-540 (2007).
  26. Townsend, D. Measuring Pressure Volume Loops in the Mouse. Journal of Visualized Experiments. (111), e53810 (2016).
  27. Barnabei, M. S., Palpant, N. J., Metzger, J. M. Influence of genetic background on ex vivo and in vivo cardiac function in several commonly used inbred mouse strains. Physiological Genomics. 42 (2), 103-113 (2010).
  28. Oosterlinck, W., Vanderper, A., Flameng, W., Herijgers, P. Glucose tolerance and left ventricular pressure-volume relationships in frequently used mouse strains. Journal of Biomedicine and Biotechnology. 2011, 281312 (2011).
  29. Guo, X., Kono, Y., Mattrey, R., Kassab, G. S. Morphometry and strain distribution of the C57BL/6 mouse aorta. The American Journal of Physiology-Heart and Circulatory Physiology. 283 (5), 1829-1837 (2002).
  30. Weiss, R. M., Ohashi, M., Miller, J. D., Young, S. G., Heistad, D. D. Calcific aortic valve stenosis in old hypercholesterolemic mice. Circulation. 114 (19), 2065-2069 (2006).
check_url/62057?article_type=t

Play Video

Cite This Article
Medert, R., Bacmeister, L., Segin, S., Freichel, M., Camacho Londoño, J. E. Cardiac Response to β-Adrenergic Stimulation Determined by Pressure-Volume Loop Analysis. J. Vis. Exp. (171), e62057, doi:10.3791/62057 (2021).

View Video