Summary

细胞扩散过程中细胞边缘动力学的定量分析

Published: May 22, 2021
doi:

Summary

在此协议中,我们介绍了基于活细胞显微镜的细胞扩散检测的实验程序。我们为荧光标记细胞的无偏见分割和细胞扩散过程中的跛脚足动力学定量分析提供了开源计算工具。

Abstract

细胞扩散是一个动态过程,其中悬浮在介质中的细胞附着在基材上,并把自己从圆形压扁成薄而分散的形状。在细胞基底附着物之后,细胞形成一块从细胞体中散发出的薄薄的跛脚状。在lamellipodia中,球状作用素(G-actin)单体聚合成密集的丝状活性蛋白(F-actin)网状物,推动对等离子膜,从而提供细胞扩散所需的机械力。值得注意的是,控制跛脚细胞聚合的分子分子对许多其他细胞过程至关重要,如细胞迁移和内分泌。

由于扩散细胞形成横跨整个细胞外围并持续向外扩张的连续跛脚状体,细胞扩散检测已成为评估跛脚突起动力学的有效工具。虽然已经制定了细胞传播检测的若干技术实施,但目前缺乏对工作流程的详细描述,其中包括分步协议和数据分析的计算工具。在这里,我们描述了细胞扩散检测的实验过程,并提出了一个开源工具,用于定量和公正地分析细胞边缘动力学在扩散过程中。当与药理学操作和/或基因沉默技术相结合时,此协议可适应调节跛脚突出的分子参与者的大规模屏幕。

Introduction

拉梅利波德突起是生长细胞前部形成的突出细胞骨结构。在lamilipodia,在Arp2/3复合物的帮助下,行为物的聚合和福明斯创造了一个快速生长的分支行为网格,推动对等离子膜1,2。网格工程产生的推动力在物理上推动细胞向前推进1,3,4,5。Arp2/3复杂或信号通路的耗竭,对于跛脚突出至关重要,通常会损害细胞迁移6,7。虽然跛脚足缺细胞的迁移也已报告8,9,跛脚足在细胞迁移中的重要性是显而易见的,因为这种突起结构的耗竭扰动细胞通过复杂的生物微环境移动的能力6,10。

理解迁移细胞中跛脚足的调控的一个主要障碍是跛脚突出动力学的自然变异性、大小和形状11、12、13、14。此外,最近的研究表明,跛脚皮迪亚表现出复杂的突出行为,包括波动,周期性,加速突出14,15。迁移细胞6、16的高度可变的跛脚足症相比,在细胞扩散过程中形成的跛脚足足12更为均匀。由于扩散和迁移细胞的突起活动是由相同的大分子组件驱动的,包括分支作用网络、收缩性活体蛋白束和基于内格林的细胞基质粘附17、18,因此扩散细胞被广泛用作研究跛脚体动力学调控的模型。

细胞扩散是一个动态的机械化学过程,悬浮中的细胞首先通过基于内格林的附着力17、19、20粘附粘附,然后通过延长基于作用的突起21、22、23进行扩散。在扩散阶段,从细胞体中喷出的跛脚足部突出异位和持久,很少或根本没有收回或停滞12。最常用的细胞扩散协议是端点检测,其中扩散细胞在电镀19,24后在不同时间固定。这些检测虽然快速而简单,但检测跛脚皮迪亚动态特征的变化的诊断能力有限。为了确定控制跛脚足动力学的分子机制,Sheetz小组率先对活扩散细胞进行了定量分析,并发现了细胞边缘突起11、12、22的许多基本特性。这些研究表明,活细胞传播检测是细胞生物学实验室工具箱中一种强大而有力的技术。尽管如此,细胞生物学界目前还无法为活细胞传播检测提供详细的协议和开源计算工具。为此,我们的协议概述了成像活传播细胞的程序,并提供了一个自动化的图像分析工具。为了验证这种方法,我们使用Arp2/3抑制作为实验治疗,并表明抑制Arp2/3复合体的功能不会阻止细胞扩散,但会导致细胞突起速度显著降低,以及细胞边缘突起的稳定性,从而产生锯齿状细胞边缘。这些数据表明,活细胞成像和自动图像分析的结合是分析细胞边缘动力学和识别调节跛脚皮迪亚的分子组件的有用工具。

Protocol

1. 细胞播种 注:描述的细胞扩散协议使用小鼠胚胎成纤维细胞(MEF)执行,表达PH-Akt-GFP(PIP3/PI(3,4)P 2的荧光标记)。该细胞系通过CRISPR介质基因编辑,通过基因学整合PH-Akt-GFP(添加基因#21218)的表达结构而生成。然而,其他在基因组中短暂表达或集成的荧光标记也可以用于此测定。为了实现最佳图像分割,我们建议使用细胞质均匀分布的荧光标记,例…

Representative Results

上述协议描述了扩散细胞活细胞成像的实验程序,以及用于细胞扩散动力学定量分析的计算工具。计算工具可以采用低通量或高通量格式,以识别调节细胞前沿作用聚合机械的分子玩家。 实验程序的示意图表示在图1中描述。细胞扩散检测是在不朽的小鼠胚胎成纤维细胞上进行的,稳定地表达了标有eGFP25的Akt蛋白激酶的丛斯特林同源(P…

Discussion

描述的细胞扩散检测允许连续跟踪形态变化(细胞大小和形状)和细胞边缘运动(突起速度和缩回频率),这是大多数细胞扩散协议19,24中缺少的功能。虽然常用的端点细胞扩散检测允许确定细胞扩散速度,但这些测定无法解决细胞边缘运动的时间动力学。缺乏时间信息限制了检测和量化跛脚突起-缩回周期变化的能力。

<p class="jov…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了康诺特基金新调查员奖、加拿大创新基金会、NSERC发现赠款计划(授予RGPIN-2015-05114和RGPIN-2020-05881)、曼彻斯特大学和多伦多大学联合研究基金以及多伦多大学XSeed项目的支持。

Materials

0.05% Trypsin (0.05%), 0.53 mM EDTA Wisent Bioproducts 325-042-CL
10.0 cm Petri Dish, Polystyrene, TC Treated, Vented Starstedt 83.3902
15 mL High Clarity PP Centrifuge Tube, Conical Bottom, with Dome Seal Screw Cap, Sterile Falcon 352097
1-Well Chamlide CMS for 22 mm x 22 mm Coverslip Quorum Technologies CM-S22-1
35 mm TC-treated Easy-Grip Style Cell Culture Dish Falcon 353001
50 mL Centrifuge Tube, Transparent, Plug Seal Nest 602002
6.0 cm Cell Culture Dishes Treated for Increased Cell Attachment, Sterile VWR 10861-658
Arp2/3 Complex Inhibitor I, CK-666 Millipore Sigma 182515
Camera, Prime 95B-25MM Photometrics
Dimethyl Sulfoxide, Sterile BioShop DMS666
DMEM, 1x, 4.5 g/L Glucose, with L-Glutamine, Sodium Pyruvate and Phenol Red Wisent Bioproducts 319-005 CL
DMEM/F-12, HEPES, No Phenol Red Gibco 11039021
D-PBS, 1X Wisent Bioproducts 311-425 CL
Fetal Bovine Serum Wisent Bioproducts 080-110
Fiji Software ImageJ
HEPES (1 M) Gibco 15630080
Human Plasma Fibronectin Purified Protein 1 mg Millipore Sigma FC010
Immersion Oil Cargille 16241
L-Glutamine Solution (200 mM) Wisent Bioproducts 609-065-EL
MEM Non-Essential Amino Acids Solution (100X) Gibco 11140050
Micro Cover Glasses, Square, No. 11/2 22 x 22 mm VWR CA48366-227-1
Microscope Body, Eclipse Ti2-E Nikon
Objective, CFI Plan Apo Lambda 60X Oil Nikon MRD01605
Penicillin-Streptomycin Sigma P4333
Spinning Disk, Crest Light V2 CrestOptics
Spyder Anaconda
Stage top incubator Tokai Hit
Statistics Software, Prism GraphPad
Tweezers, Style 2 Electron Microscopy Sciences 78326-42

References

  1. Mullins, R. D., Heuser, J. A., Pollard, T. D. The interaction of Arp2/3 complex with actin: Nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proceedings of the National Academy of Sciences. 95 (11), 6181-6186 (1998).
  2. Yang, C., Czech, L., Gerboth, S., Kojima, S., Scita, G., Svitkina, T. Novel Roles of Formin mDia2 in Lamellipodia and Filopodia Formation in Motile Cells. PLoS Biology. 5 (11), 317 (2007).
  3. Mogilner, A., Oster, G. Cell motility driven by actin polymerization. Biophysical Journal. 71 (6), 3030-3045 (1996).
  4. Mogilner, A., Oster, G. Force Generation by Actin Polymerization II: The Elastic Ratchet and Tethered Filaments. Biophysical Journal. 84 (3), 1591-1605 (2003).
  5. Pollard, T. D., Borisy, G. G. Cellular Motility Driven by Assembly and Disassembly of Actin Filaments. Cell. 112 (4), 453-465 (2003).
  6. Wu, C., et al. Arp2/3 is critical for lamellipodia and response to extracellular matrix cues but is dispensable for chemotaxis. Cell. 148 (5), 973-987 (2012).
  7. Steffen, A., et al. Rac function is crucial for cell migration but is not required for spreading and focal adhesion formation. Journal of cell science. 126, 4572-4588 (2013).
  8. Gupton, S. L., et al. Cell migration without a lamellipodium. The Journal of Cell Biology. 168 (4), 619-631 (2005).
  9. Dimchev, V., et al. Induced Arp2/3 Complex Depletion Increases FMNL2/3 Formin Expression and Filopodia Formation. Frontiers in Cell and Developmental Biology. 9, 634708 (2021).
  10. Leithner, A., et al. Diversified actin protrusions promote environmental exploration but are dispensable for locomotion of leukocytes. Nature cell biology. 18 (11), 1253-1259 (2016).
  11. Giannone, G., Dubin-Thaler, B. J., Döbereiner, H. -. G., Kieffer, N., Bresnick, A. R., Sheetz, M. P. Periodic Lamellipodial Contractions Correlate with Rearward Actin Waves. Cell. 116 (3), 431-443 (2004).
  12. Dubin-Thaler, B. J., et al. Quantification of Cell Edge Velocities and Traction Forces Reveals Distinct Motility Modules during Cell Spreading. PLoS ONE. 3 (11), 3735 (2008).
  13. Suraneni, P., Rubinstein, B., Unruh, J. R., Durnin, M., Hanein, D., Li, R. The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration. The Journal of cell biology. 197 (2), 239-251 (2012).
  14. Wang, C., et al. Deconvolution of subcellular protrusion heterogeneity and the underlying actin regulator dynamics from live cell imaging. Nature Communications. 9 (1), 1688 (2018).
  15. Dimchev, G., et al. Lamellipodin tunes cell migration by stabilizing protrusions and promoting adhesion formation. Journal of cell science. 133 (7), 239020 (2020).
  16. Burnette, D. T., et al. A role for actin arcs in the leading-edge advance of migrating cells. Nature cell biology. 13 (4), 371-381 (2011).
  17. Yamada, K. M., Kennedy, D. W. Dualistic nature of adhesive protein function: fibronectin and its biologically active peptide fragments can autoinhibit fibronectin function. The Journal of Cell Biology. 99 (1), 29-36 (1984).
  18. Cai, Y., et al. Nonmuscle Myosin IIA-Dependent Force Inhibits Cell Spreading and Drives F-Actin Flow. Biophysical Journal. 91 (10), 3907-3920 (2006).
  19. Humphries, M. J. Cell adhesion assays. Molecular Biotechnology. 18 (1), 57-61 (2001).
  20. Cavalcanti-Adam, E. A., Volberg, T., Micoulet, A., Kessler, H., Geiger, B., Spatz, J. P. Cell Spreading and Focal Adhesion Dynamics Are Regulated by Spacing of Integrin Ligands. Biophysical Journal. 92 (8), 2964-2974 (2007).
  21. Dubin-Thaler, B. J., Giannone, G., Döbereiner, H. -. G., Sheetz, M. P. Nanometer Analysis of Cell Spreading on Matrix-Coated Surfaces Reveals Two Distinct Cell States and STEPs. Biophysical Journal. 86 (3), 1794-1806 (2004).
  22. Gauthier, N. C., Fardin, M. A., Roca-Cusachs, P., Sheetz, M. P. Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading. Proceedings of the National Academy of Sciences. 108 (35), 14467-14472 (2011).
  23. Wolfenson, H., Iskratsch, T., Sheetz, M. P. Early Events in Cell Spreading as a Model for Quantitative Analysis of Biomechanical Events. Biophysical Journal. 107 (11), 2508-2514 (2014).
  24. Guan, J. -. L., Berrier, A. L., LaFlamme, S. E. Cell Migration, Developmental Methods and Protocols. Methods in molecular biology. 294, 55-68 (2004).
  25. Raucher, D., et al. Phosphatidylinositol 4,5-Bisphosphate Functions as a Second Messenger that Regulates Cytoskeleton-Plasma Membrane Adhesion. Cell. 100 (2), 221-228 (2000).
  26. Machacek, M., Danuser, G. Morphodynamic Profiling of Protrusion Phenotypes. Biophysical Journal. 90 (4), 1439-1452 (2006).
  27. Zack, G. W., Rogers, W. E., Latt, S. A. Automatic measurement of sister chromatid exchange frequency. The journal of histochemistry and cytochemistry official journal of the Histochemistry Society. 25 (7), 741-753 (1977).
  28. Bardsley, W. G., Aplin, J. D. Kinetic analysis of cell spreading. I. Theory and modelling of curves. Journal of cell science. 61, 365-373 (1983).
check_url/62369?article_type=t

Play Video

Cite This Article
Iu, E., Bogatch, A., Plotnikov, S. V. Quantitative Analysis of Cell Edge Dynamics during Cell Spreading. J. Vis. Exp. (171), e62369, doi:10.3791/62369 (2021).

View Video