Summary

En modifierad kirurgisk modell av hind limb Ischemia i ApoE-/- Möss som använder ett miniatyrsnitt

Published: May 13, 2021
doi:

Summary

Denna artikel visar en effektiv kirurgisk strategi för att upprätta akut ischemi hos möss med ett litet snitt. Detta tillvägagångssätt kan tillämpas av de flesta forskargrupper utan laboratorieuppgraderingar.

Abstract

Syftet med denna studie är att införa och utvärdera ett modifierat kirurgiskt tillvägagångssätt för att inducera akut ischemi hos möss som kan implementeras i de flesta djurlaboratorier. I motsats till den konventionella metoden för dubbel ligatur av femorala gatan (DLFA), gjordes ett mindre snitt på rätt inguinallymfknutor regionen att exponera proximal femorala gatan (FA) att utföra DLFA. Sedan, med hjälp av en 7-0 suture, drogs snittet till knä regionen för att avslöja distala FA. Magnetic resonance imaging (MRI) på bilaterala bakben användes för att upptäcka FA ocklusion efter operationen. Vid 0, 1, 3, 5 och 7 dagar efter operationen bedömdes funktionell återhämtning av bakbenen visuellt och graderades med tarlovskalan. Histologic utvärdering utfördes efter avlivning av djuren 7 dagar efter DLFA. Förfarandena utfördes framgångsrikt på höger ben i tio ApoE-/- möss, och inga möss dog under efterföljande observation. Snittstorlekarna i alla 10 möss var mindre än 5 mm (4,2 ± 0,63 mm). MRI resultat visade att FA blodflödet i den skandinaviska sidan var tydligt blockerad. Tarlov skala resultaten visade att hind lem funktion minskade avsevärt efter förfarandet och långsamt återhämtade sig under de följande 7 dagarna. Histologic utvärdering visade en betydande inflammatoriska svar på den skandinaviska sidan och minskad microvascular densitet i skandinaviska bakbenet. Sammanfattningsvis introducerar denna studie en modifierad teknik med hjälp av ett miniatyrsnitt för att utföra hind limb ischemi (HLI) med DLFA.

Introduction

Det finns ett ouppfyllt behov av prekliniska djurmodeller för forskning inom kärlsjukdomar som perifer artärsjukdom (PAD). Trots den avancerade utvecklingen inom diagnos och behandling fanns det mer än 200 miljoner patienter med PAD 20181, och deras antal ökar ständigt. Även om flera nya terapeutiska metoder2,3,4,5,6,7 har beskrivits, framgångsrik översättning av dessa terapeutiska modaliteter till klinisk tillämpning är fortfarande en skrämmande uppgift. Därför krävs tillförlitliga och relevanta in vivo-experimentella modeller som simulerar tillståndet för sjukdomen hos människa för att undersöka den potentiella mekanismen och effektiviteten hos dessa nya terapeutiska metoder för att behandla PAD6,7.

Hyperlipidemi och ateroskleros (AS) är de viktigaste riskfaktorerna för utvecklingen av PAD. ApoE-/- möss (på en fettrik diet) visar onormal fettmetabolism och hyperlipidemi och utvecklar därefter aterosklerotiska plack som gör ApoE-/- möss som det bästa valet för att simulera den kliniskt relevanta PAD. Prekliniska HLI djurmodeller genereras genom dubbel ligatur av lårbensartären (DLFA), som är den mest använda metoden i laboratorier över hela världen8,9,10,11,12,13,14,15 för att simulera akut-på-kronisk ischemi. Detta tillvägagångssätt kräver dock vanligtvis ett relativt stort och invasivt snitt. Dessutom leder det oundvikligen till att djuren (särskilt möss) lider av ökad smärtskada och inflammation, vilket också påverkar de efterföljande experimentella resultaten5,6,16,17. Detta dokument beskriver en akut-på-kronisk HLI modell i APOE-/- möss med hjälp av ett mycket litet snitt.

Protocol

OBS: Alla försök utfördes enligt EG:s riktlinje (EG 2010/63/EU och har godkänts genom den lokala tyska lagstiftningen (35–9185.81/G[1]239/18). Tio manliga ApoE-/- möss med C57BL/6J bakgrund, väger 29,6-38,0 g, var inhyst på en 12 h ljus / mörk cykel och matas en västerländsk diet (1,25% kolesterol och 21% fett) och vatten ad libitum i 12 veckor från 8 veckors ålder. HLI utfördes på 20 veckor gamla möss enligt beskrivningen nedan. 1. Induktion av HLI i ApoE<su…

Representative Results

Egenskaper hos ApoE-/- mössDLFA operationer utfördes framgångsrikt på 10 möss för att fastställa HLI-modellen, och ingen av mössen dog efter förfarandet. För att följa förändringar i kroppsvikt vägdes möss före DLFA-proceduren (Pre-DLFA) och 7 dagar efter DLFA-operationen (Post-DLFA). Pre-DLFA vikter varierade från 29,6 till 38,0 g (medelvärdet 34,74 ± 2,47 g), och vikterna efter DLFA varierade från 26,5 till 34,1 g (medelvärdet 30,77…

Discussion

Denna studie rapporterar en modifierad, förenklad och kirurgiskt effektiv metod för att upprätta en HLI-modell i ApoE-/- möss som använder dubbel ligatur i de proximala och distala regionerna i FA genom ett 3-4 mm snitt utan några nödvändiga laboratorieuppgraderingar. Huvudegenskapen för denna metod är snittets mindre storlek jämfört med tidigare rapporterade studier som beskriver mus HLI-modeller8,9,10<su…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Författarna tackar Viktoria Skude, Alexander Schlund och Felix Hörner för den utmärkta tekniska supporten.

Materials

10x Phosphate buffer saline Roth 9143.1 Used for haematoxylin and eosin stain and immunohistochemistry stain
30% H2O2 Roth 9681.2 Used for immunohistochemistry stain
6-0 absorbable sutures PROLENE 8776H Used for stitching the skin
6-0 absroable suture PROLENE EP8706 Used in Surgery
7-0 absorbable sutures PROLENE EH8021E Used for ligating the artery
7-0 absroable suture PROLENE EP8755 Used in Surgery
Acetic acid Roth 6755.1 Used for haematoxylin and eosin stain
Albumin Fraktion V Roth 8076.2 Used for immunohistochemistry stain
Autoclave Systec GmbH Systec VX-150 Used for the sterilisation of the surgical instruments
Axio vert A1 microscope Carl Zeiss ZEISS Axio Vert.A1 Used for viewing and taking the pictures from haematoxylin and eosin stain and immunohistochemistry stain
Bruker BioSpec 94/20 AVIII Bruker Biospin MRI GmbH N/A Scan the femoral artery blockage
Buprenovet Sine 0,3mg/ml Bayer AG 2542 (WDT) Used in post operative pain-management. Dose – 0.1 mg/kg body weight every 8 hours for 48 h after operation
CD31 antibody Abcam ab28364 Used for immunohistochemistry stain
Eosin Y solution 0.5 % in water Roth X883.1 Used for haematoxylin and eosin stain
Epitope Retrieval Solution pH 6 Leica Biosystems 6046945 Used for immunohistochemistry stain
Ethanol ≥ 99,5 % Roth 5054.1 Used for haematoxylin and eosin stain and immunohistochemistry stain
Fentanyl Cayman Chemical 437-38-7 Used for anesthesia
Fine point forceps Medixplus 93-4505S Used for separating the artery from nerve and vein
Glass bead sterilisator Simon Keller Type 250 Used for sterilisation of the surgical instruments
Graefe iris forceps curved VUBU VUBU-02-72207 Used for blunt separation of skin and subcutaneous tissue
Hair Remover cream, Veet (with aloe vera) Reckitt Benckiser 108972 Remove hair from mice hind limbs
Heating plate STÖRK-TRONIC 7042092 Keep the satble temperature of mice
Hematoxylin Roth T865.2 Used for haematoxylin and eosin stain and immunohistochemistry stain
Leica surgical microscope Leica M651 Enlarge the field of view to facilitate the operation
Liquid DAB+Substrate Chromogen System Dako K3468 Used for immunohistochemistry stain
Male ApoE-/- mice Charles River Laboratories N/A Used for establish the Peripheral artery disease mice model
Medetomidine Cayman Chemical 128366-50-7 Used for anesthesia
Micro Needle Holder Black & Black Surgical B3B-18-8 Holding the needle
Micro suture tying forceps Life Saver Surgical Industries PS-MSF-145 Used to assist in knotting during surgery
Microtome Biobase Bk-Mt268m Used for tissue sectioning
Midazolam Ratiopharm 44856.01.00 Used for anesthesia
MR-compatible Small Animal Monitoring and Gating System Model 1025 SA Instruments N/a monitoring vital signs of animal during MRI scan
Octeniderm farblos Schülke & Mayr GmbH 180212 used for disinfection of the skin
Ointment for the eyes and nose Bayer AG 1578675 Keep the eyes wet under the anesthesia
Paraformaldehyde Roth 0335.1 Used for fixation of the tissue
Pentobarbital Nembutal 76-74-4 Used for anesthesia
Saline DeltaSelect 1299.99.99 Used for anesthesia
Spring handle scissors with fine, sharp tips Black & Black Surgical B66167 Used for cutting the artery
SuperCut Scissors Black & Black Surgical B55992 Used for cutting the skin
Triton X-100 Roth 9002-93-1 Used for immunohistochemistry stain
Western diet, 1.25% Cholesterol ssniff Spezialdiäten GmbH E15723-34 Diet for the mice
Xylene Roth 4436.3 Used for haematoxylin and eosin stain and immunohistochemistry stain

References

  1. Shu, J., Santulli, G. Update on peripheral artery disease: Epidemiology and evidence-based facts. Atherosclerosis. 275, 379-381 (2018).
  2. Tateishi-Yuyama, E., et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 360 (9331), 427-435 (2002).
  3. Wang, Z. X., et al. Efficacy of autologous bone marrow mononuclear cell therapy in patients with peripheral arterial disease. Journal of Atherosclerosis and Thrombosis. 21 (11), 1183-1196 (2014).
  4. Botham, C. M., Bennett, W. L., Cooke, J. P. Clinical trials of adult stem cell therapy for peripheral artery disease. Methodist Debakey Cardiovascular Journal. 9 (4), 201-205 (2013).
  5. van Weel, V., et al. Vascular endothelial growth factor overexpression in ischemic skeletal muscle enhances myoglobin expression in vivo. Circulation Research. 95 (1), 58-66 (2004).
  6. Olea, F. D., et al. Vascular endothelial growth factor overexpression does not enhance adipose stromal cell-induced protection on muscle damage in critical limb ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology. 35 (1), 184-188 (2015).
  7. Peeters Weem, S. M. O., Teraa, M., de Borst, G. J., Verhaar, M. C., Moll, F. L. Bone marrow derived cell therapy in critical limb ischemia: a meta-analysis of randomized placebo controlled trials. European Journal of Vascular and Endovascular Surgery. 50 (6), 775-783 (2015).
  8. Crawford, R. S., et al. Divergent systemic and local inflammatory response to hind limb demand ischemia in wild-type and ApoE-/- mice. Journal of Surgical Research. 183 (2), 952-962 (2013).
  9. Niiyama, H., Huang, N. F., Rollins, M. D., Cooke, J. P. Murine model of hindlimb ischemia. Journal of Visualized Experiments: JoVE. (23), e1035 (2009).
  10. Brenes, R. A., et al. Toward a mouse model of hind limb ischemia to test therapeutic angiogenesis. Journal of Vascular Surgery. 56 (6), 1669-1679 (2012).
  11. Peck, M. A., et al. A functional murine model of hindlimb demand ischemia. Annals of Vascular Surgery. 24 (4), 532-537 (2010).
  12. Lejay, A., et al. A new murine model of sustainable and durable chronic critical limb ischemia fairly mimicking human pathology. European Journal of Vascular and Endovascular Surgery. 49 (2), 205-212 (2015).
  13. Nagase, H., Yao, S., Ikeda, S. Acute and chronic effects of exercise on mRNA expression in the skeletal muscle of two mouse models of peripheral artery disease. PLoS One. 12 (8), 0182456 (2017).
  14. Fu, J., et al. Hydrogen molecules (H2) improve perfusion recovery via antioxidant effects in experimental peripheral arterial disease. Molecular Medicine Reports. 18 (6), 5009-5015 (2018).
  15. Yu, J., Dardik, A. A murine model of hind limb ischemia to study angiogenesis and arteriogenesis. Methods in Molecular Biology. 1717, 135-143 (2018).
  16. Pu, L. Q., et al. Enhanced revascularization of the ischemic limb by angiogenic therapy. Circulation. 88 (1), 208-215 (1993).
  17. Takeshita, S., et al. Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. Journal of Clinical Investigation. 93 (2), 662-670 (1994).
  18. Tarlov, I. M. Spinal cord compression studies. III. Time limits for recovery after gradual compression in dogs. AMA Archives of Neurology and Psychiatry. 71 (5), 588-597 (1954).
  19. Westvik, T. S., et al. Limb ischemia after iliac ligation in aged mice stimulates angiogenesis without arteriogenesis. Journal of Vascular Surgery. 49 (2), 464-473 (2009).
  20. Hellingman, A. A., et al. Variations in surgical procedures for hind limb ischaemia mouse models result in differences in collateral formation. European Journal of Vascular and Endovascular Surgery. 40 (6), 796-803 (2010).
  21. Liu, Q., et al. CRISPR/Cas9-mediated hypoxia inducible factor-1α knockout enhances the antitumor effect of transarterial embolization in hepatocellular carcinoma. Oncology Reports. 40 (5), 2547-2557 (2018).
  22. Padgett, M. E., McCord, T. J., McClung, J. M., Kontos, C. D. Methods for acute and subacute murine hindlimb ischemia. Journal of Visualized Experiments: JoVE. (112), e54166 (2016).
  23. Pellegrin, M., et al. Experimental peripheral arterial disease: new insights into muscle glucose uptake, macrophage, and T-cell polarization during early and late stages. Physiological Reports. 2 (2), 00234 (2014).
  24. Sun, Z., et al. VEGF-loaded graphene oxide as theranostics for multi-modality imaging-monitored targeting therapeutic angiogenesis of ischemic muscle. Nanoscale. 5 (15), 6857-6866 (2013).
  25. Craige, S. M., et al. NADPH oxidase 4 promotes endothelial angiogenesis through endothelial nitric oxide synthase activation. Circulation. 124 (6), 731-740 (2011).
  26. Kant, S., et al. Neural JNK3 regulates blood flow recovery after hindlimb ischemia in mice via an Egr1/Creb1 axis. Nature Communications. 10 (1), 4223 (2019).
  27. Chevalier, J., et al. Obstruction of small arterioles in patients with critical limb ischemia due to partial endothelial-to-mesenchymal transition. iScience. 23 (6), 101251 (2020).
  28. Kosmac, K., et al. Correlations of calf muscle macrophage content with muscle properties and walking performance in peripheral artery disease. Journal of the American Heart Association. 9 (10), 015929 (2020).
  29. Mohiuddin, M., et al. Critical limb ischemia induces remodeling of skeletal muscle motor unit, myonuclear-, and mitochondrial-domains. Scientific Reports. 9 (1), 9551 (2019).
  30. Ministro, A., et al. Assessing therapeutic angiogenesis in a murine model of hindlimb ischemia. Journal of Visualized Experiments: JoVE. (148), e59582 (2019).
  31. Kilarski, W. W., Samolov, B., Petersson, L., Kvanta, A., Gerwins, P. Biomechanical regulation of blood vessel growth during tissue vascularization. Nature Medicine. 15 (6), 657-664 (2009).
  32. Portou, M. J., et al. Hyperglycaemia and ischaemia impair wound healing via Toll-like receptor 4 pathway activation in vitro and in an experimental murine model. European Journal of Vascular and Endovascular Surgery. 59 (1), 117-127 (2020).
  33. Dokun, A. O., et al. A quantitative trait locus (LSq-1) on mouse chromosome 7 is linked to the absence of tissue loss after surgical hindlimb ischemia. Circulation. 117 (9), 1207-1215 (2008).
  34. Hazarika, S., et al. MicroRNA-93 controls perfusion recovery after hindlimb ischemia by modulating expression of multiple genes in the cell cycle pathway. Circulation. 127 (17), 1818-1828 (2013).
  35. Fan, W., et al. mTORC1 and mTORC2 play different roles in the functional survival of transplanted adipose-derived stromal cells in hind limb ischemic mice via regulating inflammation in vivo. Stem Cells. 31 (1), 203-214 (2013).
  36. Terry, T., et al. CD34(+)/M-cadherin(+) bone marrow progenitor cells promote arteriogenesis in ischemic hindlimbs of ApoE(-)/(-) mice. PLoS One. 6 (6), 20673 (2011).
  37. Kwee, B. J., et al. Treating ischemia via recruitment of antigen-specific T cells. Science Advances. 5 (7), (2019).
  38. Nakada, M. T., et al. Clot lysis in a primate model of peripheral arterial occlusive disease with use of systemic or intraarterial reteplase: addition of abciximab results in improved vessel reperfusion. Journal of Vascular and Interventional Radiology: JVIR. 15 (2), 169-176 (2004).
  39. Carr, A. N., et al. Efficacy of systemic administration of SDF-1 in a model of vascular insufficiency: support for an endothelium-dependent mechanism. Cardiovascular Research. 69 (4), 925-935 (2006).
  40. Del Giudice, C., et al. Evaluation of a new model of hind limb ischemia in rabbits. Journal of Vascular Surgery. 68 (3), 849-857 (2018).
  41. Liddell, R. P., et al. Endovascular model of rabbit hindlimb ischemia: a platform to evaluate therapeutic angiogenesis. Journal of Vascular and Interventional Radiology: JVIR. 16 (7), 991-998 (2005).
  42. Aboyans, V., et al. 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteriesEndorsed by: the European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). European Heart Journal. 39 (9), 763-816 (2018).
  43. Lo Sasso, G., et al. The Apoe(-/-) mouse model: a suitable model to study cardiovascular and respiratory diseases in the context of cigarette smoke exposure and harm reduction. Journal of Translational Medicine. 14 (1), 146 (2016).

Play Video

Cite This Article
Yan, K., Zheng, J., Zöllner, F. G., Schwenke, K., Pallavi, P., Keese, M. A Modified Surgical Model of Hind Limb Ischemia in ApoE-/- Mice using a Miniature Incision. J. Vis. Exp. (171), e62402, doi:10.3791/62402 (2021).

View Video