Summary

视网膜器官诱导系统,用于从人类多能干细胞中提取3D视网膜组织

Published: April 12, 2021
doi:

Summary

在这里,我们描述了一个优化的视网膜器官诱导系统,它适用于各种人类多能干细胞系,以产生具有高可重复性和效率的视网膜组织。

Abstract

视网膜退行性疾病是无法逆转的失明的主要原因,没有有效的治疗。多能干细胞有可能分化成所有类型的视网膜细胞,甚至小视网膜组织,为这些疾病患者带来巨大的希望,在疾病建模和药物筛查方面也有很多机会。然而,从 hPSC 到视网膜细胞的诱导过程是复杂而耗时的。在这里,我们描述了一个优化的视网膜诱导协议,以产生具有高可重复性和效率的视网膜组织,适合各种人类多能干细胞。此协议执行时不添加视网膜酸,这有利于圆锥体光感受器的浓缩。本协议的优点是量化EB尺寸和电镀密度,显著提高视网膜诱导的效率和可重复性。使用这种方法,所有主要视网膜细胞依次出现并重新概括视网膜发育的主要步骤。它将促进下游应用,如疾病建模和细胞治疗。

Introduction

视网膜退行性疾病 (RD), 如与年龄相关的黄斑变性 (AMD) 和视网膜炎色素 (RP), 其特点是光感受细胞功能障碍和死亡, 通常导致不可逆转的视力丧失, 没有有效的方法来治愈1.这些疾病背后的机制在很大程度上是未知的,部分原因是缺乏人类疾病模型2。在过去的几十年里,通过干细胞技术在再生医学方面取得了重大进展。许多研究人员,包括我们自己,已经表明,人类多能干细胞(hPSCs),包括人类胚胎干细胞(hESCs)和人类诱导的多能干细胞(hiPSCs),可以通过各种分化方法3,4,5,6,7,8,9,10,分化成所有类型的视网膜细胞甚至小视网膜组织11,在疾病建模和细胞治疗方面提供巨大的潜力12,13,14。

然而,从 hPSC 到视网膜细胞的诱导过程非常复杂且耗时,可重复性低,这需要具有丰富经验和高技能的研究人员。在复杂和动态的诱导过程中,许多因素将影响视网膜组织15,16,17的产量。此外,不同的诱导方法往往在视网膜标记的正时和强健的表达上有很大的不同,这可能会混淆样本收集和数据解释3。因此,需要一个直接的视网膜分化协议,从hPSC与分步指导。

在这里,根据我们发表的研究18,19,20,21,一个优化的视网膜诱导协议,以产生视网膜器官(ROs)与丰富的锥形光感受器从hPSCs描述,这不需要视网膜酸(RA)的补充。此协议侧重于生成神经视网膜和 RPE 的多步骤方法的描述。EB 形成是早期诱导阶段的重要组成部分。BB的大小和电镀密度都经过定量优化,科学地提高了视网膜组织的产量,提高了可重复性。在感应的第二部分,光学囊泡(OVs)在依从文化和ROs形式中自我组织在悬浮文化中:这部分的时间课程和效率在不同的 hPSC 行中差异很大。ROs中视网膜细胞的成熟和规范主要发生在诱导的中后期。如果不添加 RA,可以生产具有丰富圆锥体和棒子的成熟感光器。

此协议的目的是定量描述和详细说明每个步骤,让缺乏经验的研究人员重复。通过此协议,各种 hPSC 线已成功诱导到 ROs 中,具有丰富的锥体视网膜组织的丰产和高可重复性。使用此协议的 HPSC 衍生 ROs 可以回顾 体内视网膜发育的主要步骤,并长期存活,从而促进下游应用,如疾病建模、药物筛选和细胞治疗。

Protocol

1. hPSC的文化和扩展 HPSC 文化 将两口 6 井板的油井涂上细胞外基质(ECM、hESC 合格矩阵)。在杜尔贝科的改良鹰介质 (DMEM) 中准备 50 mL 的 ECM 解决方案,其中包含 8-12 μg/mL 的 ECM。在 49 mL 的 DMEM 中,加入 1 mL 解冻的 ECM 库存解决方案 (50 倍)。在 6 井板的每个井中加入 1 mL 的 ECM 解决方案。在 37 °C 和 5% CO2的孵化器中孵育 1 小时。 根据制造商的说明准?…

Representative Results

本协议中的视网膜诱导过程模拟了人类胎儿视网膜的发展。为了启动视网膜分化,hPSC 被分离成小团块,并在悬浮中培养,以诱导 BB 的形成。在 D1 上,均匀的细胞聚合或 EB 形成 (图 1C)。文化媒介逐渐向NIM过渡。在 D5 上,EB 被镀在 ECM 涂层的文化菜肴上。细胞逐渐从EB中迁移出来(图1D)。从 D10 开始,眼场在粘附 BB 的外围区域自行组织。在 D16 上,?…

Discussion

在这个多步骤视网膜诱导协议中,hPSC 被引导一步一步地获得视网膜的命运,并自行组织成包含层压 NR 和 RPE 的视网膜器官。在分化过程中,hPSC回顾了人类视网膜 发育在体内的所有主要步骤,从EF、OV和RPE,到视网膜层压,生成视网膜细胞的所有亚型,包括视网膜结节细胞、单体细胞、双极细胞、棒状和锥形光感受器,以及空间和时间顺序的摩尔胶质细胞。视网膜发育的回顾将有利于下游?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

本研究得到了中国国家重点研发计划(2016YFC110103,2017YFA0104101)、广州科技项目基金(201803010078)、广东省科技项目(2017B020230003)、中国自然科学基金(NSF)(81570874) 81970842)、中山大学百人计划(PT1001010)和国家眼科重点实验室基础研究基金。

Materials

(−)-Blebbistatin Sigma B0560-5mg ROCK-inhibitor
1 ml tips Kirgen KG1313 1 ml
10 ml pipette Sorfa 3141001 Pipette
100 mm Tissue culture BIOFIL TCD000100 100 mm Petri dish
100 mm Tissue culture Falcon 353003 100 mm Petri dish
15 ml Centrifuge tubes BIOFIL CFT011150 Centrifuge tubes
35 mm Tissue culture dishes Falcon 353001 35 mm Petri dish
5 ml pipette Sorfa 313000 Pipette
50 ml Centrifuge tubes BIOFIL CFT011500 Centrifuge tubes
6 wells tissue culture plates Costar 3516 Culture plates
Anti-AP2α Antibody DSHB 3b5 Primary antibody
ANTIBIOTIC ANTIMYCOTIC 100X Gibco 15240062 Antibiotic-Antimycotic
Anti-ISL1 Antibody Boster BM4446 Primary antibody
Anti-Ki67 Antibody Abcam ab15580 Primary antibody
Anti-L/M opsin Antibody gift from Dr. jeremy / Primary antibody
Anti-PAX6 Antibody DSHB pax6 Primary antibody
Anti-rabbit 555 Invitrogen A31572 Donkey anti-Rabbit IgG (H+L)
Secondary Antibody, Alexa Fluor 555
Anti-Recoverin Antibody Millipore ab5585 Primary antibody
Anti-Rhodopsin Antibody Abcam ab5417 Primary antibody
Anti-sheep 555 Invitrogen A21436 Donkey anti-Sheep IgG (H+L)
Secondary Antibody, Alexa Fluor 555
Anti-SOX9 Antibody Abclonal A19710 Primary antibody
Anti-VSX2 Antibody Millipore ab9016 Primary antibody
B-27 supplement W/O VIT A (50X) Gibco 12587010 Supplement
Cryotube vial Thermo scientific-NUNC 375418 1.8 ml
DAPI DOJINDO D532 4',6-Diamidino-2-phenylindole
dihydrochloride; multiple suppliers
Dimethyl sulphoxide(DMSO) Hybri-max Sigma D2650-100ML Multiple suppliers
DMEM Gibco C11995500BT Medium
DMEM /F12 Gibco C11330500BT Medium
EDTA Invitrogen 15575-020 0.5 M PH 8.0
FBS NATOCOR SFBE Serum
Filter Millipore SLGP033RB 0.22μm, sterile Millex filter
GlutaMax, 100X Gibco 35050061 L-alanyl-L-glutamine
Heparin Sigma H3149 2 mg/ml in PBS to use
Matrigel, 100x Corning 354277 Extracellular matrix (ECM)
MEM Non-Essential Amino Acids Solution (100X) Gibco 11140050 MEM NEAA
mTeSR1 STEM CELL 85850 hPSCs maintenance medium (MM)
N2 supplement Gibco 17502048 Supplement
Phosphate-buffered saline (PBS) buffer GNM GNM10010 Without Ca+,Mg+,PH7.2±0.1 0.1M
Taurine Sigma T0625 Supplement
Ultra-low attachment culture dishes 100mm petri dish, low-attachment Corning CLS3262-20EA Petri dish

References

  1. Flaxman, S. R., et al. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. The Lancet Global Health. 5 (12), 1221-1234 (2017).
  2. Sayed, N., Liu, C., Wu, J. C. Translation of human-induced pluripotent stem cells: From clinical trial in a dish to precision medicine. Journal of American College of Cardiology. 67 (18), 2161-2176 (2016).
  3. Capowski, E. E., et al. Reproducibility and staging of 3D human retinal organoids across multiple pluripotent stem cell lines. Development. 146 (1), (2019).
  4. Brooks, M. J., et al. Improved retinal organoid differentiation by modulating signaling pathways revealed by comparative transcriptome analyses with development in vivo. Stem Cell Reports. 13 (5), 891-905 (2019).
  5. Zerti, D., et al. Developing a simple method to enhance the generation of cone and rod photoreceptors in pluripotent stem cell-derived retinal organoids. Stem Cells. 38 (1), 45-51 (2020).
  6. Osakada, F., et al. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nature Biotechnology. 26 (2), 215-224 (2008).
  7. Nakano, T., et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. 10 (6), 771-785 (2012).
  8. Zhong, X., et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nature Communication. 5, 4047 (2014).
  9. Liu, C., Oikonomopoulos, A., Sayed, N., Wu, J. C. Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond. Development. 145 (5), (2018).
  10. Lamba, D. A., Gust, J., Reh, T. A. Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell. 4 (1), 73-79 (2009).
  11. Reichman, S., et al. From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proceedings of the National Academy of Sciences. 111 (23), 8518-8523 (2014).
  12. Maeda, A., Mandai, M., Takahashi, M. Gene and Induced Pluripotent Stem Cell Therapy for Retinal Diseases. Annual Review Genomics and Human Genetics. 20, 201-216 (2019).
  13. Kruczek, K., Swaroop, A. Pluripotent stem cell-derived retinal organoids for disease modeling and development of therapies. Stem Cells. 38 (10), 1206-1215 (2020).
  14. O’Hara-Wright, M., Gonzalez-Cordero, A. Retinal organoids: a window into human retinal development. Development. 147 (24), (2020).
  15. Eckert, P., Knickmeyer, M. D., Schutz, L., Wittbrodt, J., Heermann, S. Morphogenesis and axis specification occur in parallel during optic cup and optic fissure formation, differentially modulated by BMP and Wnt. Open Biology. 9 (2), 180179 (2019).
  16. Patel, A., Sowden, J. C. Genes and pathways in optic fissure closure. Seminals in Cell and Development Biology. 91, 55-65 (2019).
  17. Chan, B. H. C., Moosajee, M., Rainger, J. Closing the Ggap: Mechanisms of epithelial fusion during optic fissure closure. Frontiers in Cell and Developmental Biology. 8, (2021).
  18. Li, G., et al. Generation of retinal organoids with mature rods and cones from urine-derived human induced pluripotent stem cells. Stem Cells International. 2018, 4968658 (2018).
  19. Liu, S., et al. Self-formation of RPE spheroids facilitates enrichment and expansion of hiPSC-derived RPE generated on retinal organoid induction platform. Investigative Ophthalmology and Visual Science. 59 (13), 5659-5669 (2018).
  20. Luo, Z., et al. An optimized system for effective derivation of three-dimensional retinal tissue via Wnt signaling regulation. Stem Cells. 36 (11), 1709-1722 (2018).
  21. Li, G., et al. Generation and characterization of induced pluripotent stem cells and retinal organoids from a leber’s congenital amaurosis patient with novel RPE65 mutations. Frontiers in Molecular Neuroscience. 12, 212 (2019).
  22. Matsa, E., Ahrens, J. H., Wu, J. C. Human induced pluripotent stem cells as a platform for personalized and precision cardiovascular medicine. Physiology Reviews. 96 (3), 1093-1126 (2016).
  23. Wahlin, K. J., et al. Photoreceptor outer segment-like structures in long-term 3d retinas from human pluripotent stem cells. Science Reports. 7 (1), 766 (2017).
  24. Eiraku, M., et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 472 (7341), 51-56 (2011).
  25. Reichman, S., et al. Generation of storable retinal organoids and retinal pigmented epithelium from adherent human iPS cells in xeno-free and feeder-free conditions. Stem Cells. 35 (5), 1176-1188 (2017).
  26. Lamba, D. A., Karl, M. O., Ware, C. B., Reh, T. A. Efficient generation of retinal progenitor cells from human embryonic stem cells. Proceedings of the National Academy of Science U. S. A. 103 (34), 12769-12774 (2006).
  27. Kuwahara, A., et al. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nature Communication. 6, 6286 (2015).
  28. da Silva, S., Cepko, C. L. Fgf8 expression and degradation of retinoic acid are required for patterning a high-acuity area in the retina. Developmental Cell. 42 (1), 68-81 (2017).
  29. Mitchell, D. M., et al. Retinoic acid signaling regulates differential expression of the tandemly-duplicated long wavelength-sensitive cone opsin genes in zebrafish. PLoS Genetics. 11 (8), 1005483 (2015).
  30. Stevens, C. B., Cameron, D. A., Stenkamp, D. L. Plasticity of photoreceptor-generating retinal progenitors revealed by prolonged retinoic acid exposure. BMC Developmental Biology. 11 (1), (2011).
  31. Eldred, K. C., et al. Thyroid hormone signaling specifies cone subtypes in human retinal organoids. Science. 362 (6411), (2018).
  32. Yang, F., Ma, H., Ding, X. Q. Thyroid hormone signaling in retinal development, survival, and disease. Vitamins and Hormones. 106, 333-349 (2018).
  33. Brzezinski, J. A., Reh, T. A. Photoreceptor cell fate specification in vertebrates. Development. 142 (19), 3263-3273 (2015).
  34. Kim, S., et al. Generation, transcriptome profiling, and functional validation of cone-rich human retinal organoids. Proceedings of the National Academy of Science U. S. A. 116 (22), 10824-10833 (2019).
  35. Lowe, A., Harris, R., Bhansali, P., Cvekl, A., Liu, W. Intercellular adhesion-dependent cell survival and ROCK-regulated actomyosin-driven forces mediate self-formation of a retinal organoid. Stem Cell Reports. 6 (5), 743-756 (2016).
  36. Carcamo-Orive, I., et al. Analysis of transcriptional variability in a large human ipsc library reveals genetic and non-genetic determinants of heterogeneity. Cell Stem Cell. 20 (4), 518-532 (2017).
  37. DeBoever, C., et al. Large-scale profiling reveals the influence of genetic variation on gene expression in human induced pluripotent stem cells. Cell Stem Cell. 20 (4), 533-546 (2017).
check_url/62435?article_type=t

Play Video

Cite This Article
Guan, Y., Xie, B., Zhong, X. Retinal Organoid Induction System for Derivation of 3D Retinal Tissues from Human Pluripotent Stem Cells. J. Vis. Exp. (170), e62435, doi:10.3791/62435 (2021).

View Video