Summary

自动、高通量检测细菌对宿主细胞的粘附

Published: September 17, 2021
doi:

Summary

使用高通量荧光标记成像以及自动统计分析方法,基于表型粘附性检测宿主 – 细菌病原体相互作用,可以快速评估细菌与宿主细胞的潜在相互作用。

Abstract

识别新出现的细菌病原体对人类健康和安全至关重要。细菌对宿主细胞的粘附是细菌感染的重要步骤,并构成潜在威胁的标志。因此,检查细菌对宿主细胞的粘附性可以用作细菌威胁评估的一个组成部分。枚举细菌对宿主细胞的粘附的标准方法是将细菌与宿主细胞共同孵育,收获贴壁细菌,将收获的细胞接种在固体培养基上,然后计算所得的菌落形成单位(CFU)。或者,可以使用基于免疫荧光显微镜的方法评估细菌对宿主细胞的依从性。然而,实施这些方法的传统策略既耗时又低效。在这里,描述了最近开发的基于自动荧光显微镜的成像方法。当与高通量图像处理和统计分析相结合时,该方法可以快速定量粘附在宿主细胞上的细菌。测试了两种细菌物种,铜绿革兰氏阴 性假单胞菌 和革兰氏阳性 单核细胞增多性李斯特菌 以及相应的阴性对照,以证明方案。结果表明,这种方法可以快速准确地枚举贴附细菌,并显着减少实验工作量和时间表。

Introduction

细菌粘附是细菌附着在其他细胞或表面上的过程。细菌病原体感染的成功建立需要粘附于宿主细胞,定植组织,并且在某些情况下,侵入宿主细胞1,2,3。新出现的传染病构成重大的公共卫生威胁,最近的COVID-19大流行4,5,6证明了这一。重要的是,使用基于基因组的方法可能无法轻易识别新的或正在出现的病原体,特别是在病原体被设计为逃避检测或不包含将其识别为致病性的基因组特征的情况下。因此,使用直接评估致病性特征的方法(如细菌对宿主细胞的粘附性)鉴定潜在病原体可以在病原体鉴定中起关键作用。

细菌对宿主细胞的粘附性已被用于评估细菌发病机制数十年1,7。显微成像8、9和通过感染后电镀枚举细菌集落形成单元(CFU)10、11、12、13是两种成熟的实验室方法,用于测试微生物的粘附和/或宿主细胞的感染14。考虑到细菌细胞的微米级大小,贴壁细菌细胞的枚举通常需要使用先进的高倍率显微镜技术,以及高分辨率成像方法,包括电子显微镜,膨胀显微镜(ExM)15,16和三维成像17.或者,可以通过在固体琼脂上接种收获的细菌的稀释系列并计数所得的CFU10,12,13来计数与宿主细胞结合或内化在宿主细胞内的细菌的枚举。这种方法费力,包括许多手动步骤,这给建立高通量分析所需的标准化或自动化程序带来了困难18,19。因此,开发用于评估宿主细胞附着的新方法将解决该领域当前的局限性。

这里描述了一种这样的方法,它使用自动化高通量显微镜,结合高通量图像处理和统计分析。为了证明这种方法,对几种细菌病原体进行了实验,包括铜绿假单胞菌,一种人类,动物和植物的机会性革兰氏阴性细菌病原体14,20,它经常被发现定植于宿主防御功能受损患者的呼吸道。这种方法优化了先前研究14,20中描述的显微成像过程。通过荧光标记的宿主细胞和细菌简化了成像检测,以快速跟踪它们的接近程度,这大大减少了显微镜工作量,以获得用于区分细菌的高分辨率图像。此外,对计数宿主细胞和细菌中的图像进行自动统计分析取代了细菌CFU接种的动手实验,以估计每个宿主细胞的贴壁细菌计数的比率。为了证实该方法的相容性,还测试了多种细菌菌株和宿主细胞类型,如单核细胞增多性李斯特菌金黄色葡萄球,蜡样芽孢杆菌肺炎克雷伯菌,以及人脐静脉内皮细胞(HUVECs),结果支持该方法的多样性和有效性。

Protocol

1. A549细胞培养 将A549细胞系维持在补充有10%胎牛血清(FBS)的F-12K培养基中,并在37°C,5%CO2下孵育。 每3-4天更换一次培养基,以85%-95%的汇合度通过。 简而言之,用1x磷酸盐缓冲盐水(PBS,pH 7.4,除非另有说明)冲洗细胞,并在37°C下用1ml 0.25%胰蛋白酶-0.53mM乙二胺四乙酸(EDTA)溶液(浸没细胞层)处理约2分钟。 加入额外的6mL完全生长培养基(F-12K培养基+ 10%F…

Representative Results

为了开发基于荧光成像的细菌粘附测定法,使用铜绿假单胞菌菌株PAO1及其阴性粘附对应物大肠杆菌来测试方案有效性,因为这些细菌对A549细胞的粘附已有报道14,20,22。首先,分别在各种MOI下将GFP标记的铜绿假单胞菌(PAO1)和GFP标记的大肠杆菌与人类永生化上皮细胞系A549共同孵育。结果表明,PAO1?…

Discussion

该协议描述了一种用于枚举细菌附着在宿主细胞上的自动化方法。与传统方法相比,所描述的方法具有几个有吸引力的优点。首先,这种方法能够精确定量附着在单个宿主细胞上的微生物病原体细胞的数量。重要的是,这种定量可以在不需要费力的细菌收获,连续稀释,在固体培养基上电镀以及CFU10,11,12的测定的情况下进行…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢Biotek Inc.的Kaite Zlotkowski博士的技术支持。这项工作得到了国防部的支持,合同号为W911NF1920013到PdF,国防高级研究计划局(DARPA)和内政部根据合同号140D6319C0029到PdF。资料的内容不一定反映政府的立场或政策,不应推断官方认可。

Materials

10x PBS VWR 45001-130
4′,6-diamidino-2-phenylindole (DAPI) Thermo Fisher 62248 Host cell staining dye
96 well plate Corning 3882 Half area well, flat clear bottom
A549 cells ATCC  CCL 185 Mammalian cell line
BactoView Live Red Biotium 40101 Bacteria staning dye
Centrifuge Eppendorf 5810R
CFSE cell division tracker BioLegend 423801
Cytation 5  BioTek Cytation 5  Cell imaging multi-mode reader
E. coli Laboratory stock 
EGM bulletKit Lonza CC-3124 HUVEC cell culture medium
EHEC NIST collections
F-12k medium ATCC  302004 A549 cell culture medium
Fetal bovine serum Corning 35-016-CV
HUVEC Laboratory stock 
L. monocytogenes NIST collections
OD600 DiluPhotometer IMPLEN
P. aeruginosa Dr. Lori Burrows laboratory stock
P. aeruginosa ΔpilA Dr. Lori Burrows laboratory stock
S. agalactiae NIST collections
S. aureus BEI NR-46543
S. aureus ΔsaeR BEI NR-48164
S. rubidaea NIST collections
Typical soy broth Growcells MBPE-4040

References

  1. Pizarro-Cerda, J., Cossart, P. Bacterial adhesion and entry into host cells. Cell. 124, 715-727 (2006).
  2. Kipnis, E., Sawa, T., Wiener-Kronish, J. Targeting mechanisms of Pseudomonas aeruginosa pathogenesis. Médecine et Maladies Infectieuses. 36 (2), 78-91 (2006).
  3. Josse, J., Laurent, F., Diot, A. Staphylococcal adhesion and host cell invasion: Fibronectin-binding and other mechanisms. Frontiers in Microbiology. 8, 2433 (2017).
  4. Cabibbo, G., Rizzo, G. E. M., Stornello, C., Craxì, A. SARS-CoV-2 infection in patients with a normal or abnormal liver. Journal of Viral Hepatitis. 28 (1), 4-11 (2021).
  5. Ortiz-Prado, E., et al. Clinical, molecular, and epidemiological characterization of the SARS-CoV-2 virus and the Coronavirus Disease 2019 (COVID-19), a comprehensive literature review. Diagnostic Microbiology and Infectious Disease. 98 (1), 115094 (2020).
  6. Chang, C. C., Senining, R., Kim, J., Goyal, R. An acute pulmonary coccidioidomycosis coinfection in a patient presenting with multifocal pneumonia with COVID-19. Journal of Investigative Medicine High Impact Case Reports. 8, (2020).
  7. Woo, V., et al. Microbiota inhibit epithelial pathogen adherence by epigenetically regulating C-type lectin expression. Frontiers in Immunology. 10, 928 (2019).
  8. Pandey, A., et al. Global reprogramming of host kinase signaling in response to fungal infection. Cell Host Microbe. 21 (5), 637-649 (2017).
  9. Ding, S., et al. Interactions between fungal hyaluronic acid and host CD44 promote internalization by recruiting host autophagy proteins to forming phagosomes. iScience. 24 (3), 102192 (2021).
  10. Qin, Q. M., et al. RNAi screen of endoplasmic reticulum-associated host factors reveals a role for IRE1alpha in supporting Brucella replication. PLoS Pathogens. 4 (7), 1000110 (2008).
  11. Qin, Q. M., et al. Functional analysis of host factors that mediate the intracellular lifestyle of Cryptococcus neoformans. PLoS Pathogens. 7 (6), 1002078 (2011).
  12. Qin, Q. M., et al. A tractable Drosophila cell system enables rapid identification of Acinetobacter baumannii host factors. Frontiers in Cellular and Infection Microbiology. 10, 240 (2020).
  13. Pandey, A., et al. Activation of host IRE1α-dependent signaling axis contributes the intracellular parasitism of Brucella melitensis. Frontiers in Cellular and Infection Microbiology. 8, 103 (2018).
  14. Chi, E., Mehl, T., Nunn, D., Lory, S. Interaction of Pseudomonas aeruginosa with A549 pneumocyte cells. Infection and Immunity. 59 (3), 822-828 (1990).
  15. Götz, R., et al. Nanoscale imaging of bacterial infections by sphingolipid expansion microscopy. Nature Communications. 11, 6173 (2020).
  16. Lim, Y., et al. Mechanically resolved imaging of bacteria using expansion microscopy. PLOS Biology. 17 (10), 3000268 (2019).
  17. Bratton, B. P., Barton, B., Morgenstein, R. M. Three-dimensional Imaging of bacterial cells for accurate cellular representations and precise protein localization. Journal of Visualized Experiments. (152), e60350 (2019).
  18. Hoffmann, S., et al. High-throughput quantification of bacterial-cell interactions using virtual colony counts. Frontiers in Cellular and Infection Microbiology. 8, 43 (2018).
  19. Hazan, R., Que, Y. -. A., Maura, D., Rahme, L. G. A method for high throughput determination of viable bacteria cell counts in 96-well plates. BMC Microbiology. 12 (1), 259 (2012).
  20. Gellatly, S. L., Hancock, R. E. W. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathogens and Disease. 67, 159-173 (2013).
  21. Jiang, R. D., Shen, H., Piao, Y. J. The morphometrical analysis on the ultrastructure of A549 cells. Romanian Journal of Morphology and Embryology. 51 (4), 663-667 (2010).
  22. Farinha, M. A., et al. Alteration of the pilin adhesin of Pseudomonas aeruginosa PAO results in normal pilus biogenesis but a loss of adherence to human pneumocyte cells and decreased virulence in mice. Infection and Immunity. 62 (10), 4118-4123 (1994).
  23. Réglier-Poupet, H., Pellegrini, E., Charbit, A., Berche, P. Identification of LpeA, a PsaA-Like membrane protein that promotes cell entry by Listeria monocytogenes. Infection and immunity. 71 (1), 474-482 (2003).
  24. Ortega, F. E., et al. Adhesion to the host cell surface is sufficient to mediate Listeria monocytogenes entry into epithelial cells. Molecular Biology of the Cell. 28 (22), 2945-2957 (2017).
check_url/62764?article_type=t

Play Video

Cite This Article
Yang, J., Qin, Q., Van Schaik, E., Samuel, J. E., de Figueiredo, P. Automated, High-Throughput Detection of Bacterial Adherence to Host Cells. J. Vis. Exp. (175), e62764, doi:10.3791/62764 (2021).

View Video