Summary

通过共聚焦显微镜成像分析进行细胞外囊泡摄取测定

Published: February 14, 2022
doi:

Summary

细胞外囊泡(EV)有助于细胞生物学和细胞间通讯。需要实际的测定来可视化和量化细胞对EV的摄取。目前的方案提出了EV摄取测定,通过共聚焦显微镜利用三维荧 光成像, 然后通过基于纳滤的微流体装置进行EV分离。

Abstract

需要实际的测定来可视化和量化细胞的细胞外囊泡(EV)摄取。EV摄取在各个研究领域的细胞间通讯中发挥作用;癌症生物学,神经科学和药物输送。文献中已经报道了许多EV摄取测定;然而,缺乏实用,详细的实验方法。可以通过荧光标记EV来评估EV的摄取,以检测它们在细胞中的位置。区分细胞内化的EV和细胞上的浅表EV对于准确确定EV摄取是困难的,但至关重要。因此,在这项工作中提出了一种通过三维(3D)荧光共聚焦显微镜有效量化EV摄取的测定方法。使用基于纳滤的微流体装置制备荧光标记的EV,通过3D共聚焦显微镜可视化,然后通过先进的图像处理软件进行分析。该协议为在细胞水平上分析电动汽车提供了一种强大的方法,并为有效分析提供了一种实用的方法。

Introduction

细胞外囊泡(EV)是纳米大小的脂质膜结合颗粒,按其大小分类:外体(100-500nm)和外泌体(50-150nm)1。EV含有各种生物分子,如蛋白质、核酸和脂质。这些生物分子起源于细胞,然后被封装为货物并通过EV123释放到细胞外空间。

由于其货物的多样性,电动汽车被认为在细胞间通信中发挥着积极作用。细胞释放和摄取EV允许生物分子在细胞之间转移45。将EV货物引入细胞可能会改变受体细胞的功能和稳态456。电动汽车通过多种途径内化;然而,确切的机制尚未得到准确证明。

大多数EV摄取测定,如遗传标记,荧光标记单个EV7。由此产生的信号可以通过微孔板光度计,流式细胞术或显微镜进行测量,每种技术都有很大的局限性。微孔板光度计、流式细胞术或标准二维(2D)显微镜无法区分内化和浅表附着的EV89。此外,这些技术中的每一种的必要样品制备都可能给EV摄取评估带来其他问题。例如,在EV摄取分析之前用胰蛋白酶提升粘附的细胞可能会切割细胞表面的一些表面附着的EV1011。胰蛋白酶也可能与细胞表面相互作用,影响细胞和EV表型。此外,胰蛋白酶可能不会完全分离浅表的EV,从而扭曲孤立的人群。

为了用荧光染料准确标记EV,需要额外的洗涤步骤来去除残留的染料7。公认的隔离技术也可能导致由于EV隔离期间发生的凝血而导致假阳性信号。例如,连续超速离心(UC)被广泛用于分离EV和去除固定化染料。然而,UC可能会共同沉淀EV,并且残留的染料可能导致假阳性信号1213。其他纳滤方法,如基于色谱柱的过滤,也广泛用于非固定化染料去除。EV和染料在柱基质内相互作用的复杂性质可能导致残留染料的不完全去除,因为复合物输入改变了色谱柱的分子截止141516

目前的方案提出了一种基于纳米过滤的微流体装置,用于分离和洗涤荧光标记的分离EV。基于纳滤的微流体装置 可以通过 流体辅助分离技术(FAST)1718提供有效的过滤。FAST降低了过滤器的压降,从而减少了电动汽车和染料之间的潜在聚集。通过有效去除残留染料,可以提高荧光标记EV的质量和测定的特异性。

共聚焦显微镜可以区分细胞表面内化和浅表附着的EV,并在时空分辨率下全面研究EV摄取的细胞机制19202122232425例如,Sung等人使用他们开发的活细胞报告器描述了外泌体生命周期的可视化。使用三维(3D)和后图像处理工具中的共聚焦显微镜检测和分析内化EV的位置20。虽然小型EV(40-200nm)的尺寸低于光学显微镜的分辨率极限,但由于光电探测器可以检测到增强的荧光发射,因此可以通过共聚焦显微镜检测荧光标记的EV。因此,通过获取EV和周围细胞器的多个z堆叠图像,可以精确地确定细胞内荧光标记的EV的亚细胞定位。

此外,3D重建和后数据处理可以进一步了解内部化,浅表和自由浮动的电动汽车的定位。通过将这些过程与共聚焦显微镜提供的延时活细胞成像相结合,可以精确评估EV摄取的水平,并且还可以实时跟踪EV摄取。此外,通过评估EV与细胞器的共定位,可以使用共聚焦显微镜进行EV贩运分析,这是确定内化EV如何参与细胞内功能的第一步。该协议描述了使用基于纳滤的微流体装置1726,共聚焦显微镜和图像后分析进行EV摄取测定的方法。

Protocol

1. EV分离和片上免疫荧光EV标记 细胞培养基(CCM)的收集和CCM的预处理,用于EV分离 将PC3细胞以30%汇合度接种在75 cm 2 细胞培养瓶中。允许对照细胞在标准培养基和细胞系特异性补充剂中生长至90%汇合度(约48小时)。注意:为了防止含EV的成分影响细胞摄取(即胎儿牛血清),请使用外泌体耗尽的培养基和补充剂。 收获CCM。 在室温(RT)下以1000× g …

Representative Results

使用基于纳米过滤的微流体装置,从PC3 CCM中分离EV并用荧光团偶联的EV特异性(CD63)抗体标记(图1)。标记的EV通过3D共聚焦显微镜成功可视化(图2)。标记的EV与细胞在外泌体耗尽的培养基中孵育数小时。孵育后,用外泌体耗尽的培养基洗涤细胞。其余的EV在孵育期间被内化或粘附在细胞上。已标记单元格区域。内化的EV被可视化为puncta19<sup class="xref"…

Discussion

通过共聚焦显微镜进行基于3D荧光成像的EV摄取测定提供了一种有效的方法和灵敏的分析。这种荧光EV标记有助于EV的可视化,并成功执行精确的EV摄取测定。以前用于标记EV和去除残留染料的方法已经通过使用超速离心(UC)去除沉淀来报道;然而,UC可能会共同沉淀EV,并且固定化的染料可能导致假阳性信号1213。基于纳米过滤的微流体装置消除了…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了NCI拨款号的支持。U54CA143803、CA163124、CA093900 和 CA143055 至 K. J. P.这项研究得到了韩国健康产业发展研究所(KHIDI)韩国健康技术研发项目的资助,该研究由韩国卫生福利部资助(批准号:HI19C1122)。J. Kim和Y.-K的作品Cho得到了韩国政府资助的基础科学研究所(IBS-R020-D1)的支持。作者感谢布雷迪泌尿外科研究所的现任和前任成员,特别是Pienta-Amend实验室的成员,对手稿的批判性阅读。

Materials

Alexa Fluor 488 anti-human CD63 Antibody Biolegend 353038 Fluorescent dye conjugated EV-specific antibody
CellTracker Orange CMTMR Dye Thermo Fisher Scientific C2927 Live cell (cytoplasm) fluoresent labeling reagent
CFI Apo Lambda S 40XC WI Nikon MRD77400 Objective for confocal imaging, NA=1.25
CFI Plan Apo VC 20X Nikon MRD70200 Objective for confocal imaging, NA=0.75
Exodisc Labspinner Inc. EX-D1001 A nano-filtration based microfluidic device for EV isolation
ExoDiscovery Labspinner Inc. EX-R1001 Operation device for Exodisc
Exosome-depleted FBS Thermo Fisher Scientific A2720801 Nutrient of cell culture media for PC3 cell line derived EV collection
Fetal bovine serum (FBS) VWR 1500-500 Nutrient for cell cultivation
Goat Anti-Mouse IgG H&L preadsorbed abcam  ab7063 Mouse IgG antibody for negatvie control of EV labeling
Ibidi USA U DISH μ-Dish 35 mm Ibidi 81156 Culture dish for confocal imaging
Imaris 9.7.1 Oxford Instruments 9.7.1 Post-image processing software
Incubator System+ CO2/O2/N2 gas mixer Live Cell Instrument TU-O-20 Incubator system for live cell imaging
Nikon A1 HD25 / A1R HD25 camera Nikon NA Camera for confocal imaging
Nikon Eclipse Ti microscope Nikon NA Inverted microscope for confocal imaging
NIS-Elements AR 4.50.00 Nikon 4.50.00 Image processing software for Nikon microscope
NTA, NanoSight NS500 Malvern Panalytical NS500 Measurement device for EV concentration
OriginPro 2020 OriginLab 9.7.0.185 Graphing software
Penicillin-Streptomycin Thermo Fisher Scientific 15140122 Antibiotics for cell cultivation
RPMI 1640 Thermo Fisher Scientific 21875034 Cell culture media for PC3 cell line cultivation
SYTO RNASelect Green Fluorescent cell Stain – 5 mM Solution in DMSO Thermo Fisher Scientific S32703 RNA staining fluorescent dye for the EV labeling

References

  1. Meldolesi, J. Exosomes and Ectosomes in Intercellular Communication. Current Biology. 28 (8), 435-444 (2018).
  2. Sunkara, V., Woo, H. -. K., Cho, Y. -. K. Emerging techniques in the isolation and characterization of extracellular vesicles and their roles in cancer diagnostics and prognostics. The Analyst. 141 (2), 371-381 (2016).
  3. Kalluri, R., Lebleu, V. S. The biology, function, and biomedical applications of exosomes. Science. 367 (6478), (2020).
  4. Mathieu, M., Martin-Jaular, L., Lavieu, G., Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nature Cell Biology. 21 (1), 9-17 (2019).
  5. Bonsergent, E., et al. Quantitative characterization of extracellular vesicle uptake and content delivery within mammalian cells. Nature Communications. 12, 1864 (2021).
  6. Mulcahy, L. A., Pink, R. C., Carter, D. R. F. Routes and mechanisms of extracellular vesicle uptake. Journal of Extracellular Vesicles. 3 (1), 24641 (2014).
  7. Dehghani, M., Gaborski, T. R. Fluorescent labeling of extracellular vesicles. Methods Enzymology. 645, 15-42 (2020).
  8. Ragni, E., et al. Innovative Visualization and Quantification of Extracellular Vesicles Interaction with and Incorporation in Target Cells in 3D Microenvironments. Cells. 9 (5), 1180 (2020).
  9. Saari, H., et al. FLIM reveals alternative EV-mediated cellular up-take pathways of paclitaxel. Journal of Controlled Release. 284, 133-143 (2018).
  10. Franzen, C. A., et al. Characterization of Uptake and Internalization of Exosomes by Bladder Cancer Cells. BioMed Research International. 2014, 619829 (2014).
  11. Feng, D., et al. Cellular Internalization of Exosomes Occurs Through Phagocytosis. Traffic. 11 (5), 675-687 (2010).
  12. Hoen, E. N. M. N. -. T., et al. Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles. Nanomedicine: Nanotechnology, Biology and Medicine. 8 (5), 712-720 (2012).
  13. Van Der Vlist, E. J., Nolte-‘T Hoen, E. N. M., Stoorvogel, W., Arkesteijn, G. J. A., Wauben, M. H. M. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nature Protocols. 7 (7), 1311-1326 (2012).
  14. Li, P., Kaslan, M., Lee, S. H., Yao, J., Gao, Z. Progress in Exosome Isolation Techniques. Theranostics. 7 (3), 789-804 (2017).
  15. Yang, D., et al. and perspective on exosome isolation – efforts for efficient exosome-based theranostics. Theranostics. 10 (8), 3684-3707 (2020).
  16. Singh, K., et al. Separation of distinct exosome subpopulations: isolation and characterization approaches and their associated challenges. The Analyst. 146 (12), 3731-3749 (2021).
  17. Woo, H. -. K., et al. Exodisc for Rapid, Size-Selective, and Efficient Isolation and Analysis of Nanoscale Extracellular Vesicles from Biological Samples. ACS Nano. 11 (2), 1360-1370 (2017).
  18. Kim, T. -. H., et al. FAST: Size-Selective, Clog-Free Isolation of Rare Cancer Cells from Whole Blood at a Liquid-Liquid Interface. Analytical Chemistry. 89 (2), 1155-1162 (2017).
  19. Joshi, B. S., De Beer, M. A., Giepmans, B. N. G., Zuhorn, I. S. Endocytosis of Extracellular Vesicles and Release of Their Cargo from Endosomes. ACS Nano. 14 (4), 4444-4455 (2020).
  20. Sung, B. H., et al. A live cell reporter of exosome secretion and uptake reveals pathfinding behavior of migrating cells. Nature Communications. 11, 2092 (2020).
  21. Heusermann, W., et al. Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER. Journal of Cell Biology. 213 (2), 173-184 (2016).
  22. Reclusa, P., et al. Improving extracellular vesicles visualization: From static to motion. Scientific Reports. 10, 6494 (2020).
  23. Verweij, F. J., et al. Live Tracking of Inter-organ Communication by Endogenous Exosomes In Vivo. Developmental Cell. 48 (4), 573-589 (2019).
  24. Lai, C. P., et al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nature Communications. 6, 7029 (2015).
  25. Durak-Kozica, M., Baster, Z., Kubat, K., Stępień, E. 3D visualization of extracellular vesicle uptake by endothelial cells. Cellular & Molecular Biology Letters. 23, 57 (2018).
  26. Sunkara, V., et al. Fully Automated, Label-Free Isolation of Extracellular Vesicles from Whole Blood for Cancer Diagnosis and Monitoring. Theranostics. 9 (7), 1851-1863 (2019).
  27. Li, H., et al. Internalization of trophoblastic small extracellular vesicles and detection of their miRNA cargo in P-bodies. Journal of Extracellular Vesicles. 9 (1), 1812261 (2020).
  28. Dong, L., et al. Comprehensive evaluation of methods for small extracellular vesicles separation from human plasma, urine and cell culture medium. Journal of Extracellular Vesicles. 10, 12044 (2020).
check_url/62836?article_type=t

Play Video

Cite This Article
Kim, C., Kuczler, M. D., Dong, L., Kim, J., Amend, S. R., Cho, Y., Pienta, K. J. Extracellular Vesicle Uptake Assay via Confocal Microscope Imaging Analysis. J. Vis. Exp. (180), e62836, doi:10.3791/62836 (2022).

View Video